/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // Copyright (C) 2021 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "aptdemod.h" #include "aptdemodsink.h" APTDemodSink::APTDemodSink(APTDemod *packetDemod) : m_aptDemod(packetDemod), m_channelSampleRate(APTDEMOD_AUDIO_SAMPLE_RATE), m_channelFrequencyOffset(0), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_imageWorkerMessageQueue(nullptr), m_samples(nullptr) { m_magsq = 0.0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); m_samplesLength = APTDEMOD_AUDIO_SAMPLE_RATE * APT_MAX_HEIGHT / 2; // APT broadcasts at 2 lines per second m_samples = new float[m_samplesLength]; resetDecoder(); } void APTDemodSink::resetDecoder() { m_sampleCount = 0; m_writeIdx = 0; m_readIdx = 0; apt_init(APTDEMOD_AUDIO_SAMPLE_RATE); m_row = 0; m_zenith = 0; } APTDemodSink::~APTDemodSink() { delete[] m_samples; } // callback from APT library to get audio samples static int getsamples(void *context, float *samples, int count) { APTDemodSink *sink = (APTDemodSink *)context; return sink->getSamples(samples, count); } int APTDemodSink::getSamples(float *samples, int count) { for (int i = 0; i < count; i++) { if ((m_sampleCount > 0) && (m_readIdx < m_samplesLength)) { *samples++ = m_samples[m_readIdx++]; m_sampleCount--; } else return i; } return count; } void APTDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } // Have we enough samples to decode one line? // 2 lines per second if (m_sampleCount >= APTDEMOD_AUDIO_SAMPLE_RATE) { if (getImageWorkerMessageQueue()) { float *pixels = new float[APT_PROW_WIDTH]; apt_getpixelrow(pixels, m_row, &m_zenith, m_row == 0, getsamples, this); getImageWorkerMessageQueue()->push(APTDemod::MsgPixels::create(pixels, m_zenith)); } m_row++; } } void APTDemodSink::processOneSample(Complex &ci) { Complex ca; // FM demodulation double magsqRaw; Real deviation; Real fmDemod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation); // Add to sample buffer, if there's space and decoding is enabled if ((m_writeIdx < m_samplesLength) && m_settings.m_decodeEnabled) { m_samples[m_writeIdx++] = fmDemod; m_sampleCount++; } // Calculate average and peak levels for level meter Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; } void APTDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "APTDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth, 2.2); m_interpolatorDistance = (Real) channelSampleRate / (Real) APTDEMOD_AUDIO_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void APTDemodSink::applySettings(const APTDemodSettings& settings, bool force) { qDebug() << "APTDemodSink::applySettings:" << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_fmDeviation: " << settings.m_fmDeviation << " m_decodeEnabled: " << settings.m_decodeEnabled << " force: " << force; if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth, 2.2); m_interpolatorDistance = (Real) m_channelSampleRate / (Real) APTDEMOD_AUDIO_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling(APTDEMOD_AUDIO_SAMPLE_RATE / (2.0f * settings.m_fmDeviation)); } m_settings = settings; }