/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // Copyright (C) 2021 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/dspengine.h" #include "dsp/datafifo.h" #include "util/db.h" #include "util/stepfunctions.h" #include "pipes/pipeendpoint.h" #include "maincore.h" #include "packetdemod.h" #include "packetdemodsink.h" PacketDemodSink::PacketDemodSink(PacketDemod *packetDemod) : m_packetDemod(packetDemod), m_channelSampleRate(PACKETDEMOD_CHANNEL_SAMPLE_RATE), m_channelFrequencyOffset(0), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_messageQueueToChannel(nullptr), m_f1(nullptr), m_f0(nullptr), m_corrBuf(nullptr), m_corrIdx(0), m_corrCnt(0) { m_magsq = 0.0; m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } PacketDemodSink::~PacketDemodSink() { delete[] m_f1; delete[] m_f0; delete[] m_corrBuf; } void PacketDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void PacketDemodSink::processOneSample(Complex &ci) { Complex ca; // FM demodulation double magsqRaw; Real deviation; Real fmDemod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation); // Calculate average and peak levels for level meter Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; m_corrBuf[m_corrIdx] = fmDemod; if (m_corrCnt >= m_correlationLength) { // Correlate with 1200 + 2200 baud complex exponentials Complex corrF0 = 0.0f; Complex corrF1 = 0.0f; for (int i = 0; i < m_correlationLength; i++) { int j = m_corrIdx - i; if (j < 0) j += m_correlationLength; corrF0 += m_f0[i] * m_corrBuf[j]; corrF1 += m_f1[i] * m_corrBuf[j]; } m_corrCnt--; // Avoid overflow in increment below // Low pass filter, to minimize changes above the baud rate Real f0Filt = m_lowpassF0.filter(std::abs(corrF0)); Real f1Filt = m_lowpassF1.filter(std::abs(corrF1)); // Determine which is the closest match and then quantise to 1 or -1 // FIXME: We should try to account for the fact that higher frequencies can have preemphasis float diff = f1Filt - f0Filt; int sample = diff >= 0.0f ? 1 : 0; // Look for edge if (sample != m_samplePrev) { m_syncCount = PACKETDEMOD_CHANNEL_SAMPLE_RATE/m_settings.m_baud/2; } else { m_syncCount--; if (m_syncCount <= 0) { // HDLC deframing // Should be in the middle of the symbol // NRZI decoding int bit; if (sample != m_symbolPrev) bit = 0; else bit = 1; m_symbolPrev = sample; // Store in shift reg m_bits |= bit << m_bitCount; m_bitCount++; if (bit == 1) { m_onesCount++; // Shouldn't ever get 7 1s in a row if ((m_onesCount == 7) && m_gotSOP) { m_gotSOP = false; m_byteCount = 0; } } else if (bit == 0) { if (m_onesCount == 5) { // Remove bit-stuffing (5 1s followed by a 0) m_bitCount--; } else if (m_onesCount == 6) { // Start/end of packet if ((m_bitCount == 8) && (m_bits == 0x7e) && (m_byteCount > 0)) { // End of packet // Check CRC is valid m_crc.init(); m_crc.calculate(m_bytes, m_byteCount - 2); uint16_t calcCrc = m_crc.get(); uint16_t rxCrc = m_bytes[m_byteCount-2] | (m_bytes[m_byteCount-1] << 8); if (calcCrc == rxCrc) { QByteArray rxPacket((char *)m_bytes, m_byteCount); qDebug() << "RX: " << rxPacket.toHex(); if (getMessageQueueToChannel()) { MainCore::MsgPacket *msg = MainCore::MsgPacket::create(m_packetDemod, rxPacket, QDateTime::currentDateTime()); // FIXME pointer getMessageQueueToChannel()->push(msg); } } else qDebug() << QString("CRC mismatch: %1 %2").arg(calcCrc, 4, 16, QLatin1Char('0')).arg(rxCrc, 4, 16, QLatin1Char('0')); // Reset state to start receiving next packet m_gotSOP = false; m_bits = 0; m_bitCount = 0; m_byteCount = 0; } else { // Start of packet m_gotSOP = true; m_bits = 0; m_bitCount = 0; m_byteCount = 0; } } m_onesCount = 0; } if (m_gotSOP) { if (m_bitCount == 8) { if (m_byteCount >= 512) { // Too many bytes m_gotSOP = false; m_byteCount = 0; } else { m_bytes[m_byteCount] = m_bits; m_byteCount++; } m_bits = 0; m_bitCount = 0; } } m_syncCount = PACKETDEMOD_CHANNEL_SAMPLE_RATE/m_settings.m_baud; } } m_samplePrev = sample; } m_corrIdx = (m_corrIdx + 1) % m_correlationLength; m_corrCnt++; m_demodBuffer[m_demodBufferFill++] = fmDemod * std::numeric_limits::max(); if (m_demodBufferFill >= m_demodBuffer.size()) { QList *dataFifos = MainCore::instance()->getDataPipes().getFifos(m_channel, "demod"); if (dataFifos) { QList::iterator it = dataFifos->begin(); for (; it != dataFifos->end(); ++it) { (*it)->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16)); } } m_demodBufferFill = 0; } } void PacketDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "PacketDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2); m_interpolatorDistance = (Real) channelSampleRate / (Real) PACKETDEMOD_CHANNEL_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void PacketDemodSink::applySettings(const PacketDemodSettings& settings, bool force) { qDebug() << "PacketDemodSink::applySettings:" << " force: " << force; if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2); m_interpolatorDistance = (Real) m_channelSampleRate / (Real) PACKETDEMOD_CHANNEL_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; m_lowpass.create(301, PACKETDEMOD_CHANNEL_SAMPLE_RATE, settings.m_rfBandwidth / 2.0f); } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling(PACKETDEMOD_CHANNEL_SAMPLE_RATE / (2.0f * settings.m_fmDeviation)); } if (force) { delete[] m_f1; delete[] m_f0; delete[] m_corrBuf; m_correlationLength = PACKETDEMOD_CHANNEL_SAMPLE_RATE/settings.m_baud; m_f1 = new Complex[m_correlationLength](); m_f0 = new Complex[m_correlationLength](); m_corrBuf = new Complex[m_correlationLength](); m_corrIdx = 0; m_corrCnt = 0; Real f0 = 0.0f; Real f1 = 0.0f; for (int i = 0; i < m_correlationLength; i++) { m_f0[i] = Complex(cos(f0), sin(f0)); m_f1[i] = Complex(cos(f1), sin(f1)); f0 += 2.0f*(Real)M_PI*2200.0f/PACKETDEMOD_CHANNEL_SAMPLE_RATE; f1 += 2.0f*(Real)M_PI*1200.0f/PACKETDEMOD_CHANNEL_SAMPLE_RATE; } m_lowpassF1.create(301, PACKETDEMOD_CHANNEL_SAMPLE_RATE, settings.m_baud * 1.1f); m_lowpassF0.create(301, PACKETDEMOD_CHANNEL_SAMPLE_RATE, settings.m_baud * 1.1f); m_samplePrev = 0; m_syncCount = 0; m_symbolPrev = 0; m_bits = 0; m_bitCount = 0; m_onesCount = 0; m_gotSOP = false; m_byteCount = 0; } m_settings = settings; }