/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020, 2022 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "SWGDeviceSettings.h" #include "SWGXtrxMIMOSettings.h" #include "SWGDeviceState.h" #include "SWGDeviceReport.h" #include "SWGXtrxMIMOReport.h" #include "device/deviceapi.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplesink.h" #include "dsp/devicesamplesource.h" #include "xtrx/devicextrxparam.h" #include "xtrx/devicextrxshared.h" #include "xtrx/devicextrx.h" #include "xtrxmithread.h" #include "xtrxmothread.h" #include "xtrxmimo.h" MESSAGE_CLASS_DEFINITION(XTRXMIMO::MsgConfigureXTRXMIMO, Message) MESSAGE_CLASS_DEFINITION(XTRXMIMO::MsgGetStreamInfo, Message) MESSAGE_CLASS_DEFINITION(XTRXMIMO::MsgGetDeviceInfo, Message) MESSAGE_CLASS_DEFINITION(XTRXMIMO::MsgReportClockGenChange, Message) MESSAGE_CLASS_DEFINITION(XTRXMIMO::MsgReportStreamInfo, Message) MESSAGE_CLASS_DEFINITION(XTRXMIMO::MsgStartStop, Message) XTRXMIMO::XTRXMIMO(DeviceAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_sourceThread(nullptr), m_sinkThread(nullptr), m_deviceDescription("XTRXMIMO"), m_runningRx(false), m_runningTx(false), m_open(false) { m_open = openDevice(); m_mimoType = MIMOHalfSynchronous; m_sampleMIFifo.init(2, 4096 * 64); m_sampleMOFifo.init(2, 4096 * 64); m_deviceAPI->setNbSourceStreams(2); m_deviceAPI->setNbSinkStreams(2); m_networkManager = new QNetworkAccessManager(); QObject::connect( m_networkManager, &QNetworkAccessManager::finished, this, &XTRXMIMO::networkManagerFinished ); } XTRXMIMO::~XTRXMIMO() { QObject::disconnect( m_networkManager, &QNetworkAccessManager::finished, this, &XTRXMIMO::networkManagerFinished ); delete m_networkManager; closeDevice(); } bool XTRXMIMO::openDevice() { m_deviceShared.m_dev = new DeviceXTRX(); char serial[256]; strcpy(serial, qPrintable(m_deviceAPI->getSamplingDeviceSerial())); if (!m_deviceShared.m_dev->open(serial)) { qCritical("XTRXMIMO::openDevice: cannot open XTRX device"); return false; } return true; } void XTRXMIMO::closeDevice() { if (m_runningRx) { stopRx(); } if (m_runningTx) { stopTx(); } m_deviceShared.m_dev->close(); delete m_deviceShared.m_dev; m_deviceShared.m_dev = nullptr; } void XTRXMIMO::destroy() { delete this; } void XTRXMIMO::init() { applySettings(m_settings, QList(), true); } bool XTRXMIMO::startRx() { qDebug("XTRXMIMO::startRx"); if (!m_open) { qCritical("XTRXMIMO::startRx: device was not opened"); return false; } QMutexLocker mutexLocker(&m_mutex); if (m_runningRx) { stopRx(); } m_sourceThread = new XTRXMIThread(m_deviceShared.m_dev->getDevice()); m_sampleMIFifo.reset(); m_sourceThread->setFifo(&m_sampleMIFifo); m_sourceThread->setLog2Decimation(m_settings.m_log2SoftDecim); m_sourceThread->setIQOrder(m_settings.m_iqOrder); m_sourceThread->startWork(); mutexLocker.unlock(); m_runningRx = true; return true; } bool XTRXMIMO::startTx() { qDebug("XTRXMIMO::startTx"); if (!m_open) { qCritical("XTRXMIMO::startTx: device was not opened"); return false; } QMutexLocker mutexLocker(&m_mutex); if (m_runningRx) { stopRx(); } m_sinkThread = new XTRXMOThread(m_deviceShared.m_dev->getDevice()); m_sampleMOFifo.reset(); m_sinkThread->setFifo(&m_sampleMOFifo); m_sinkThread->setLog2Interpolation(m_settings.m_log2SoftInterp); m_sinkThread->startWork(); mutexLocker.unlock(); m_runningTx = true; return true; } void XTRXMIMO::stopRx() { qDebug("XTRXMIMO::stopRx"); if (!m_sourceThread) { return; } QMutexLocker mutexLocker(&m_mutex); m_sourceThread->stopWork(); delete m_sourceThread; m_sourceThread = nullptr; m_runningRx = false; } void XTRXMIMO::stopTx() { qDebug("XTRXMIMO::stopTx"); if (!m_sinkThread) { return; } QMutexLocker mutexLocker(&m_mutex); m_sinkThread->stopWork(); delete m_sinkThread; m_sinkThread = nullptr; m_runningTx = false; } QByteArray XTRXMIMO::serialize() const { return m_settings.serialize(); } bool XTRXMIMO::deserialize(const QByteArray& data) { bool success = true; if (!m_settings.deserialize(data)) { m_settings.resetToDefaults(); success = false; } MsgConfigureXTRXMIMO* message = MsgConfigureXTRXMIMO::create(m_settings, QList(), true); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureXTRXMIMO* messageToGUI = MsgConfigureXTRXMIMO::create(m_settings, QList(), true); m_guiMessageQueue->push(messageToGUI); } return success; } const QString& XTRXMIMO::getDeviceDescription() const { return m_deviceDescription; } int XTRXMIMO::getSourceSampleRate(int index) const { (void) index; uint32_t rate = getRxDevSampleRate(); return (rate / (1<{"rxCenterFrequency"}, false); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureXTRXMIMO* messageToGUI = MsgConfigureXTRXMIMO::create(settings, QList{"rxCenterFrequency"}, false); m_guiMessageQueue->push(messageToGUI); } } quint64 XTRXMIMO::getSinkCenterFrequency(int index) const { (void) index; return m_settings.m_txCenterFrequency; } void XTRXMIMO::setSinkCenterFrequency(qint64 centerFrequency, int index) { (void) index; XTRXMIMOSettings settings = m_settings; settings.m_txCenterFrequency = centerFrequency; MsgConfigureXTRXMIMO* message = MsgConfigureXTRXMIMO::create(settings, QList{"txCenterFrequency"}, false); m_inputMessageQueue.push(message); if (m_guiMessageQueue) { MsgConfigureXTRXMIMO* messageToGUI = MsgConfigureXTRXMIMO::create(settings, QList{"txCenterFrequency"}, false); m_guiMessageQueue->push(messageToGUI); } } uint32_t XTRXMIMO::getRxDevSampleRate() const { if (m_deviceShared.m_dev) { return m_deviceShared.m_dev->getActualInputRate(); } else { return m_settings.m_rxDevSampleRate; } } uint32_t XTRXMIMO::getTxDevSampleRate() const { if (m_deviceShared.m_dev) { return m_deviceShared.m_dev->getActualOutputRate(); } else { return m_settings.m_txDevSampleRate; } } uint32_t XTRXMIMO::getLog2HardDecim() const { if (m_deviceShared.m_dev && (m_deviceShared.m_dev->getActualInputRate() != 0.0)) { return log2(m_deviceShared.m_dev->getClockGen() / m_deviceShared.m_dev->getActualInputRate() / 4); } else { return m_settings.m_log2HardDecim; } } uint32_t XTRXMIMO::getLog2HardInterp() const { if (m_deviceShared.m_dev && (m_deviceShared.m_dev->getActualOutputRate() != 0.0)) { return log2(m_deviceShared.m_dev->getClockGen() / m_deviceShared.m_dev->getActualOutputRate() / 4); } else { return m_settings.m_log2HardInterp; } } double XTRXMIMO::getClockGen() const { if (m_deviceShared.m_dev) { return m_deviceShared.m_dev->getClockGen(); } else { return 0.0; } } bool XTRXMIMO::handleMessage(const Message& message) { if (MsgConfigureXTRXMIMO::match(message)) { MsgConfigureXTRXMIMO& conf = (MsgConfigureXTRXMIMO&) message; qDebug() << "XTRXMIMO::handleMessage: MsgConfigureXTRXMIMO"; bool success = applySettings(conf.getSettings(), conf.getSettingsKeys(), conf.getForce()); if (!success) { qDebug("XTRXMIMO::handleMessage: config error"); } return true; } else if (MsgGetStreamInfo::match(message)) { if (getMessageQueueToGUI() && m_deviceShared.m_dev && m_deviceShared.m_dev->getDevice()) { uint64_t fifolevelRx = 0; uint64_t fifolevelTx = 0; xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_RX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevelRx); xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_TX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevelTx); MsgReportStreamInfo *report = MsgReportStreamInfo::create( true, true, fifolevelRx, fifolevelTx, 65536); getMessageQueueToGUI()->push(report); } return true; } else if (MsgGetDeviceInfo::match(message)) { double board_temp = 0.0; bool gps_locked = false; if (!m_deviceShared.m_dev->getDevice() || ((board_temp = m_deviceShared.get_board_temperature() / 256.0) == 0.0)) { qDebug("XTRXMIMO::handleMessage: MsgGetDeviceInfo: cannot get board temperature"); } if (!m_deviceShared.m_dev->getDevice()) { qDebug("XTRXMIMO::handleMessage: MsgGetDeviceInfo: cannot get GPS lock status"); } else { gps_locked = m_deviceShared.get_gps_status(); } // send to oneself if (getMessageQueueToGUI()) { DeviceXTRXShared::MsgReportDeviceInfo *report = DeviceXTRXShared::MsgReportDeviceInfo::create(board_temp, gps_locked); getMessageQueueToGUI()->push(report); } return true; } else if (MsgStartStop::match(message)) { MsgStartStop& cmd = (MsgStartStop&) message; qDebug() << "XTRXMIMO::handleMessage: " << " " << (cmd.getRxElseTx() ? "Rx" : "Tx") << " MsgStartStop: " << (cmd.getStartStop() ? "start" : "stop"); bool startStopRxElseTx = cmd.getRxElseTx(); if (cmd.getStartStop()) { if (m_deviceAPI->initDeviceEngine(startStopRxElseTx ? 0 : 1)) { m_deviceAPI->startDeviceEngine(startStopRxElseTx ? 0 : 1); } } else { m_deviceAPI->stopDeviceEngine(startStopRxElseTx ? 0 : 1); } if (m_settings.m_useReverseAPI) { webapiReverseSendStartStop(cmd.getStartStop()); } return true; } else { return false; } } bool XTRXMIMO::applySettings(const XTRXMIMOSettings& settings, const QList& settingsKeys, bool force) { qDebug() << "XTRXMIMO::applySettings: force:" << force << settings.getDebugString(settingsKeys, force); bool doRxLPCalibration = false; bool doRxChangeSampleRate = false; bool doRxChangeFreq = false; bool doTxLPCalibration = false; bool doTxChangeSampleRate = false; bool doTxChangeFreq = false; bool forceNCOFrequencyRx = false; bool forceNCOFrequencyTx = false; bool forwardChangeRxDSP = false; bool forwardChangeTxDSP = false; qint64 rxXlatedDeviceCenterFrequency = settings.m_rxCenterFrequency; qint64 txXlatedDeviceCenterFrequency = settings.m_txCenterFrequency; // common if (settingsKeys.contains("extClock") || (settings.m_extClock && settingsKeys.contains("extClockFreq")) || force) { if (m_deviceShared.m_dev->getDevice() != 0) { xtrx_set_ref_clk(m_deviceShared.m_dev->getDevice(), (settings.m_extClock) ? settings.m_extClockFreq : 0, (settings.m_extClock) ? XTRX_CLKSRC_EXT : XTRX_CLKSRC_INT); { doRxChangeSampleRate = true; doTxChangeSampleRate = true; doRxChangeFreq = true; doTxChangeFreq = true; qDebug("XTRXMIMO::applySettings: clock set to %s (Ext: %d Hz)", settings.m_extClock ? "external" : "internal", settings.m_extClockFreq); } } } // Rx if (settingsKeys.contains("dcBlock") || force) { m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection); } if (settingsKeys.contains("iqCorrection") || force) { m_deviceAPI->configureCorrections(settings.m_dcBlock, settings.m_iqCorrection); } if (settingsKeys.contains("rxDevSampleRate") || settingsKeys.contains("log2HardDecim") || force) { forwardChangeRxDSP = true; if (m_deviceShared.m_dev->getDevice()) { doRxChangeSampleRate = true; } } if (settingsKeys.contains("log2SoftDecim") || force) { forwardChangeRxDSP = true; if (m_sourceThread) { m_sourceThread->setLog2Decimation(settings.m_log2SoftDecim); qDebug() << "XTRXMIMO::applySettings: set soft decimation to " << (1<setIQOrder(settings.m_iqOrder); } } if (settingsKeys.contains("ncoFrequencyRx") || settingsKeys.contains("ncoEnableRx") || force) { forceNCOFrequencyRx = true; } if (settingsKeys.contains("antennaPathRx") || force) { if (m_deviceShared.m_dev->getDevice()) { if (xtrx_set_antenna(m_deviceShared.m_dev->getDevice(), toXTRXAntennaRx(settings.m_antennaPathRx)) < 0) { qCritical("XTRXMIMO::applySettings: could not set antenna path of Rx to %d", (int) settings.m_antennaPathRx); } else { qDebug("XTRXMIMO::applySettings: set Rx antenna path to %d", (int) settings.m_antennaPathRx); } } } if (settingsKeys.contains("rxCenterFrequency") || force) { doRxChangeFreq = true; } // Rx0/1 if (settingsKeys.contains("pwrmodeRx0") || force) { if (m_deviceShared.m_dev->getDevice()) { if (xtrx_val_set(m_deviceShared.m_dev->getDevice(), XTRX_TRX, XTRX_CH_A, XTRX_LMS7_PWR_MODE, settings.m_pwrmodeRx0) < 0) { qCritical("XTRXMIMO::applySettings: could not set Rx0 power mode %d", settings.m_pwrmodeRx0); } } } if (settingsKeys.contains("pwrmodeRx1") || force) { if (m_deviceShared.m_dev->getDevice()) { if (xtrx_val_set(m_deviceShared.m_dev->getDevice(), XTRX_TRX, XTRX_CH_B, XTRX_LMS7_PWR_MODE, settings.m_pwrmodeRx1) < 0) { qCritical("XTRXMIMO::applySettings: could not set Rx1 power mode %d", settings.m_pwrmodeRx0); } } } if (m_deviceShared.m_dev->getDevice()) { bool doGainAuto = false; bool doGainLna = false; bool doGainTia = false; bool doGainPga = false; if (settingsKeys.contains("gainModeRx0") || force) { if (settings.m_gainModeRx0 == XTRXMIMOSettings::GAIN_AUTO) { doGainAuto = true; } else { doGainLna = true; doGainTia = true; doGainPga = true; } } else if (m_settings.m_gainModeRx0 == XTRXMIMOSettings::GAIN_AUTO) { if (m_settings.m_gainRx0 != settings.m_gainRx0) { doGainAuto = true; } } else if (m_settings.m_gainModeRx0 == XTRXMIMOSettings::GAIN_MANUAL) { if (settingsKeys.contains("lnaGainRx0")) { doGainLna = true; } if (settingsKeys.contains("tiaGainRx0")) { doGainTia = true; } if (settingsKeys.contains("pgaGainRx0")) { doGainPga = true; } } if (doGainAuto) { applyGainAuto(0, m_settings.m_gainRx0); } if (doGainLna) { applyGainLNA(0, m_settings.m_lnaGainRx0); } if (doGainTia) { applyGainTIA(0, tiaToDB(m_settings.m_tiaGainRx0)); } if (doGainPga) { applyGainPGA(0, m_settings.m_pgaGainRx0); } doGainAuto = false; doGainLna = false; doGainTia = false; doGainPga = false; if (settingsKeys.contains("gainModeRx1") || force) { if (settings.m_gainModeRx1 == XTRXMIMOSettings::GAIN_AUTO) { doGainAuto = true; } else { doGainLna = true; doGainTia = true; doGainPga = true; } } else if (m_settings.m_gainModeRx1 == XTRXMIMOSettings::GAIN_AUTO) { if (m_settings.m_gainRx1 != settings.m_gainRx1) { doGainAuto = true; } } else if (m_settings.m_gainModeRx1 == XTRXMIMOSettings::GAIN_MANUAL) { if (settingsKeys.contains("lnaGainRx1")) { doGainLna = true; } if (settingsKeys.contains("tiaGainRx1")) { doGainTia = true; } if (settingsKeys.contains("pgaGainRx1")) { doGainPga = true; } } if (doGainAuto) { applyGainAuto(1, m_settings.m_gainRx1); } if (doGainLna) { applyGainLNA(1, m_settings.m_lnaGainRx1); } if (doGainTia) { applyGainTIA(1, tiaToDB(m_settings.m_tiaGainRx1)); } if (doGainPga) { applyGainPGA(1, m_settings.m_pgaGainRx1); } } if (settingsKeys.contains("lpfBWRx0") || force) { if (m_deviceShared.m_dev->getDevice()) { doRxLPCalibration = true; } } if (settingsKeys.contains("lpfBWRx1") || force) { if (m_deviceShared.m_dev->getDevice()) { doRxLPCalibration = true; } } // Tx if (settingsKeys.contains("txDevSampleRate") || settingsKeys.contains("log2HardInterp") || force) { forwardChangeTxDSP = true; if (m_deviceShared.m_dev->getDevice()) { doTxChangeSampleRate = true; } } if (settingsKeys.contains("log2SoftInterp") || force) { forwardChangeTxDSP = true; if (m_sinkThread) { m_sinkThread->setLog2Interpolation(settings.m_log2SoftInterp); qDebug("XTRXMIMO::applySettings: set soft interpolation to %u", (1<getDevice()) { if (xtrx_set_antenna(m_deviceShared.m_dev->getDevice(), toXTRXAntennaTx(settings.m_antennaPathTx)) < 0) { qCritical("XTRXMIMO::applySettings: could not set Tx antenna path to %d", (int) settings.m_antennaPathTx); } else { qDebug("XTRXMIMO::applySettings: set Tx antenna path to %d", (int) settings.m_antennaPathTx); } } } if (settingsKeys.contains("txCenterFrequency") || force) { doTxChangeFreq = true; } // Tx0 if (settingsKeys.contains("pwrmodeTx0") || force) { if (m_deviceShared.m_dev->getDevice()) { if (xtrx_val_set(m_deviceShared.m_dev->getDevice(), XTRX_TRX, XTRX_CH_A, XTRX_LMS7_PWR_MODE, settings.m_pwrmodeTx0) < 0) { qCritical("XTRXMIMO::applySettings: could not set Tx0 power mode %d", settings.m_pwrmodeTx0); } } } if (settingsKeys.contains("gainTx0") || force) { if (m_deviceShared.m_dev->getDevice()) { if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(), XTRX_CH_A, XTRX_TX_PAD_GAIN, settings.m_gainTx0, 0) < 0) { qDebug("XTRXMIMO::applySettings: Tx0 gain (PAD) set to %u failed", settings.m_gainTx0); } else { qDebug("XTRXMIMO::applySettings: Tx0 gain (PAD) set to %u", settings.m_gainTx0); } } } if (settingsKeys.contains("lpfBWTx0") || force) { if (m_deviceShared.m_dev->getDevice()) { doTxLPCalibration = true; } } // Reverse API if (settings.m_useReverseAPI) { bool fullUpdate = (settingsKeys.contains("useReverseAPI") && settings.m_useReverseAPI) || settingsKeys.contains("reverseAPIAddress") || settingsKeys.contains("reverseAPIPort") || settingsKeys.contains("reverseAPIDeviceIndex"); webapiReverseSendSettings(settingsKeys, settings, fullUpdate || force); } if (force) { m_settings = settings; } else { m_settings.applySettings(settingsKeys, settings); } // Post Rx if (doRxChangeSampleRate && (m_settings.m_rxDevSampleRate != 0)) { // if (m_sourceThread && m_sourceThread->isRunning()) // { // m_sourceThread->stopWork(); // rxThreadWasRunning = true; // } bool success = m_deviceShared.m_dev->setSamplerate( m_settings.m_rxDevSampleRate, m_settings.m_log2HardDecim, m_settings.m_log2HardInterp, false ); doRxChangeFreq = true; forceNCOFrequencyRx = true; forwardChangeRxDSP = true; m_settings.m_rxDevSampleRate = m_deviceShared.m_dev->getActualInputRate(); m_settings.m_txDevSampleRate = m_deviceShared.m_dev->getActualOutputRate(); m_settings.m_log2HardDecim = getLog2HardDecim(); m_settings.m_log2HardInterp = getLog2HardInterp(); qDebug("XTRXMIMO::applySettings: sample rate set %s to Rx:%f Tx:%f with decimation of %d and interpolation of %d", success ? "unchanged" : "changed", m_settings.m_rxDevSampleRate, m_settings.m_txDevSampleRate, 1 << m_settings.m_log2HardDecim, 1 << m_settings.m_log2HardInterp); // if (rxThreadWasRunning) { // m_sourceThread->startWork(); // } } if (doRxLPCalibration) { if (xtrx_tune_rx_bandwidth(m_deviceShared.m_dev->getDevice(), XTRX_CH_A, m_settings.m_lpfBWRx0, 0) < 0) { qCritical("XTRXMIMO::applySettings: could not set Rx0 LPF to %f Hz", m_settings.m_lpfBWRx0); } else { qDebug("XTRXMIMO::applySettings: Rx0 LPF set to %f Hz", m_settings.m_lpfBWRx0); } if (xtrx_tune_rx_bandwidth(m_deviceShared.m_dev->getDevice(), XTRX_CH_B, m_settings.m_lpfBWRx1, 0) < 0) { qCritical("XTRXMIMO::applySettings: could not set Rx1 LPF to %f Hz", m_settings.m_lpfBWRx1); } else { qDebug("XTRXMIMO::applySettings: Rx1 LPF set to %f Hz", m_settings.m_lpfBWRx1); } } if (doRxChangeFreq) { forwardChangeRxDSP = true; if (m_deviceShared.m_dev->getDevice()) { qint64 deviceCenterFrequency = DeviceSampleSource::calculateDeviceCenterFrequency( rxXlatedDeviceCenterFrequency, 0, m_settings.m_log2SoftDecim, DeviceSampleSource::FC_POS_CENTER, m_settings.m_rxDevSampleRate, DeviceSampleSource::FrequencyShiftScheme::FSHIFT_STD, false); setRxDeviceCenterFrequency(m_deviceShared.m_dev->getDevice(), deviceCenterFrequency); } } if (forceNCOFrequencyRx) { forwardChangeRxDSP = true; if (m_deviceShared.m_dev->getDevice()) { if (xtrx_tune_ex(m_deviceShared.m_dev->getDevice(), XTRX_TUNE_BB_RX, XTRX_CH_AB, (m_settings.m_ncoEnableRx) ? m_settings.m_ncoFrequencyRx : 0, nullptr) < 0) { qCritical("XTRXMIMO::applySettings: could not %s and set Rx NCO to %d Hz", m_settings.m_ncoEnableRx ? "enable" : "disable", m_settings.m_ncoFrequencyRx); } else { qDebug("XTRXMIMO::applySettings: %sd and set NCO Rx to %d Hz", m_settings.m_ncoEnableRx ? "enable" : "disable", m_settings.m_ncoFrequencyRx); } } } // Post Tx if (doTxChangeSampleRate && !doRxChangeSampleRate && (m_settings.m_txDevSampleRate != 0)) { // if (m_sinkThread && m_sinkThread->isRunning()) // { // m_sinkThread->stopWork(); // txThreadWasRunning = true; // } bool success = m_deviceShared.m_dev->setSamplerate( m_settings.m_txDevSampleRate, m_settings.m_log2HardDecim, m_settings.m_log2HardInterp, true ); doTxChangeFreq = true; forceNCOFrequencyTx = true; forwardChangeTxDSP = true; m_settings.m_rxDevSampleRate = m_deviceShared.m_dev->getActualInputRate(); m_settings.m_txDevSampleRate = m_deviceShared.m_dev->getActualOutputRate(); m_settings.m_log2HardDecim = getLog2HardDecim(); m_settings.m_log2HardInterp = getLog2HardInterp(); qDebug("XTRXMIMO::applySettings: sample rate set %s to Rx:%f Tx:%f with decimation of %d and interpolation of %d", success ? "unchanged" : "changed", m_settings.m_rxDevSampleRate, m_settings.m_txDevSampleRate, 1 << m_settings.m_log2HardDecim, 1 << m_settings.m_log2HardInterp); // if (txThreadWasRunning) { // m_sinkThread->startWork(); // } } if (doTxLPCalibration) { if (xtrx_tune_tx_bandwidth(m_deviceShared.m_dev->getDevice(), XTRX_CH_A, m_settings.m_lpfBWTx0, 0) < 0) { qCritical("XTRXMIMO::applySettings: could not set Tx0 LPF to %f Hz", m_settings.m_lpfBWTx0); } else { qDebug("XTRXMIMO::applySettings: Tx0 LPF set to %f Hz", m_settings.m_lpfBWTx0); } if (xtrx_tune_tx_bandwidth(m_deviceShared.m_dev->getDevice(), XTRX_CH_B, m_settings.m_lpfBWTx1, 0) < 0) { qCritical("XTRXMIMO::applySettings: could not set Tx1 LPF to %f Hz", m_settings.m_lpfBWTx1); } else { qDebug("XTRXMIMO::applySettings: Tx1 LPF set to %f Hz", m_settings.m_lpfBWTx1); } } if (doTxChangeFreq) { forwardChangeTxDSP = true; if (m_deviceShared.m_dev->getDevice()) { qint64 deviceCenterFrequency = DeviceSampleSink::calculateDeviceCenterFrequency( txXlatedDeviceCenterFrequency, 0, settings.m_log2SoftInterp, DeviceSampleSink::FC_POS_CENTER, m_settings.m_txDevSampleRate, false); setTxDeviceCenterFrequency(m_deviceShared.m_dev->getDevice(), deviceCenterFrequency); } } if (forceNCOFrequencyTx) { forwardChangeTxDSP = true; if (m_deviceShared.m_dev->getDevice()) { if (xtrx_tune_ex(m_deviceShared.m_dev->getDevice(), XTRX_TUNE_BB_TX, XTRX_CH_AB, (m_settings.m_ncoEnableTx) ? m_settings.m_ncoFrequencyTx : 0, nullptr) < 0) { qCritical("XTRXMIMO::applySettings: could not %s and set Tx NCO to %d Hz", m_settings.m_ncoEnableTx ? "enable" : "disable", m_settings.m_ncoFrequencyTx); } else { qDebug("XTRXMIMO::applySettings: %sd and set Tx NCO to %d Hz", m_settings.m_ncoEnableTx ? "enable" : "disable", m_settings.m_ncoFrequencyTx); } } } unsigned int fifoRate = std::max( (unsigned int) m_settings.m_txDevSampleRate / (1<push(report); } int sampleRate = m_settings.m_rxDevSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notifRx0); DSPMIMOSignalNotification *notifRx1 = new DSPMIMOSignalNotification(sampleRate, m_settings.m_rxCenterFrequency + ncoShift, true, 1); m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notifRx1); sampleRate = m_settings.m_txDevSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notifTx0); DSPMIMOSignalNotification *notifTx1 = new DSPMIMOSignalNotification(sampleRate, m_settings.m_txCenterFrequency + ncoShift, false, 1); m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notifTx1); } // if (forwardChangeRxDSP) // { // int sampleRate = m_settings.m_rxDevSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif0); // DSPMIMOSignalNotification *notif1 = new DSPMIMOSignalNotification(sampleRate, m_settings.m_rxCenterFrequency + ncoShift, true, 1); // m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif1); // } // if (forwardChangeTxDSP) // { // int sampleRate = m_settings.m_txDevSampleRate/(1<getDeviceEngineInputMessageQueue()->push(notif0); // DSPMIMOSignalNotification *notif1 = new DSPMIMOSignalNotification(sampleRate, m_settings.m_txCenterFrequency + ncoShift, false, 1); // m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif1); // } return true; } void XTRXMIMO::applyGainAuto(unsigned int channel, uint32_t gain) { uint32_t lna, tia, pga; DeviceXTRX::getAutoGains(gain, lna, tia, pga); applyGainLNA(channel, lna); applyGainTIA(channel, tiaToDB(tia)); applyGainPGA(channel, pga); } void XTRXMIMO::applyGainLNA(unsigned int channel, double gain) { if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(), channel == 0 ? XTRX_CH_A : XTRX_CH_B, XTRX_RX_LNA_GAIN, gain, 0) < 0) { qDebug("XTRXMIMO::applyGainLNA: set Rx%u gain (LNA) to %f failed", channel, gain); } else { qDebug("XTRXMIMO::applyGainLNA: Rx%u gain (LNA) set to %f", channel, gain); } } void XTRXMIMO::applyGainTIA(unsigned int channel, double gain) { if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(), channel == 0 ? XTRX_CH_A : XTRX_CH_B, XTRX_RX_TIA_GAIN, gain, 0) < 0) { qDebug("XTRXMIMO::applyGainTIA: set Rx%u gain (TIA) to %f failed", channel, gain); } else { qDebug("XTRXMIMO::applyGainTIA: Rx%u gain (TIA) set to %f", channel, gain); } } void XTRXMIMO::applyGainPGA(unsigned int channel, double gain) { if (xtrx_set_gain(m_deviceShared.m_dev->getDevice(), channel == 0 ? XTRX_CH_A : XTRX_CH_B, XTRX_RX_PGA_GAIN, gain, 0) < 0) { qDebug("XTRXMIMO::applyGainPGA: set Rx%u gain (PGA) to %f failed", channel, gain); } else { qDebug("XTRXMIMO::applyGainPGA: Rx%u gain (PGA) set to %f", channel, gain); } } double XTRXMIMO::tiaToDB(unsigned idx) { switch (idx) { case 1: return 12; case 2: return 9; default: return 0; } } xtrx_antenna_t XTRXMIMO::toXTRXAntennaRx(XTRXMIMOSettings::RxAntenna antennaPath) { switch (antennaPath) { case XTRXMIMOSettings::RXANT_LO: return XTRX_RX_L; case XTRXMIMOSettings::RXANT_HI: return XTRX_RX_H; default: return XTRX_RX_W; } } xtrx_antenna_t XTRXMIMO::toXTRXAntennaTx(XTRXMIMOSettings::TxAntenna antennaPath) { switch (antennaPath) { case XTRXMIMOSettings::TXANT_HI: return XTRX_TX_H; default: return XTRX_TX_W; } } void XTRXMIMO::getLORange(float& minF, float& maxF, float& stepF) const { minF = 29e6; maxF = 3840e6; stepF = 10; qDebug("XTRXMIMO::getLORange: min: %f max: %f step: %f", minF, maxF, stepF); } void XTRXMIMO::getSRRange(float& minF, float& maxF, float& stepF) const { minF = 100e3; maxF = 120e6; stepF = 10; qDebug("XTRXMIMO::getSRRange: min: %f max: %f step: %f", minF, maxF, stepF); } void XTRXMIMO::getLPRange(float& minF, float& maxF, float& stepF) const { minF = 500e3; maxF = 130e6; stepF = 10; qDebug("XTRXMIMO::getLPRange: min: %f max: %f step: %f", minF, maxF, stepF); } void XTRXMIMO::setRxDeviceCenterFrequency(xtrx_dev *dev, quint64 freq_hz) { if (dev) { if (xtrx_tune(dev, XTRX_TUNE_RX_FDD, freq_hz, nullptr) < 0) { qCritical("XTRXMIMO::setRxDeviceCenterFrequency: could not set Rx frequency to %llu", freq_hz); } else { qDebug("XTRXMIMO::setRxDeviceCenterFrequency: Rx frequency set to %llu", freq_hz); } } } void XTRXMIMO::setTxDeviceCenterFrequency(xtrx_dev *dev, quint64 freq_hz) { if (dev) { if (xtrx_tune(dev, XTRX_TUNE_TX_FDD, freq_hz, nullptr) < 0) { qCritical("XTRXMIMO::setTxDeviceCenterFrequency: could not set Tx frequency to %llu", freq_hz); } else { qDebug("XTRXMIMO::setTxDeviceCenterFrequency: Tx frequency set to %llu", freq_hz); } } } int XTRXMIMO::webapiSettingsGet( SWGSDRangel::SWGDeviceSettings& response, QString& errorMessage) { (void) errorMessage; response.setXtrxMimoSettings(new SWGSDRangel::SWGXtrxMIMOSettings()); response.getXtrxMimoSettings()->init(); webapiFormatDeviceSettings(response, m_settings); return 200; } int XTRXMIMO::webapiSettingsPutPatch( bool force, const QStringList& deviceSettingsKeys, SWGSDRangel::SWGDeviceSettings& response, // query + response QString& errorMessage) { (void) errorMessage; XTRXMIMOSettings settings = m_settings; webapiUpdateDeviceSettings(settings, deviceSettingsKeys, response); MsgConfigureXTRXMIMO *msg = MsgConfigureXTRXMIMO::create(settings, deviceSettingsKeys, force); m_inputMessageQueue.push(msg); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureXTRXMIMO *msgToGUI = MsgConfigureXTRXMIMO::create(settings, deviceSettingsKeys, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatDeviceSettings(response, settings); return 200; } void XTRXMIMO::webapiUpdateDeviceSettings( XTRXMIMOSettings& settings, const QStringList& deviceSettingsKeys, SWGSDRangel::SWGDeviceSettings& response) { // common if (deviceSettingsKeys.contains("extClock")) { settings.m_extClock = response.getXtrxMimoSettings()->getExtClock() != 0; } if (deviceSettingsKeys.contains("extClockFreq")) { settings.m_extClockFreq = response.getXtrxMimoSettings()->getExtClockFreq(); } if (deviceSettingsKeys.contains("gpioDir")) { settings.m_gpioDir = response.getXtrxMimoSettings()->getGpioDir(); } if (deviceSettingsKeys.contains("gpioPins")) { settings.m_gpioPins = response.getXtrxMimoSettings()->getGpioPins(); } if (deviceSettingsKeys.contains("useReverseAPI")) { settings.m_useReverseAPI = response.getXtrxInputSettings()->getUseReverseApi() != 0; } if (deviceSettingsKeys.contains("reverseAPIAddress")) { settings.m_reverseAPIAddress = *response.getXtrxInputSettings()->getReverseApiAddress(); } if (deviceSettingsKeys.contains("reverseAPIPort")) { settings.m_reverseAPIPort = response.getXtrxInputSettings()->getReverseApiPort(); } if (deviceSettingsKeys.contains("reverseAPIDeviceIndex")) { settings.m_reverseAPIDeviceIndex = response.getXtrxInputSettings()->getReverseApiDeviceIndex(); } // Rx if (deviceSettingsKeys.contains("rxDevSampleRate")) { settings.m_rxDevSampleRate = response.getXtrxMimoSettings()->getRxDevSampleRate(); } if (deviceSettingsKeys.contains("log2HardDecim")) { settings.m_log2HardDecim = response.getXtrxMimoSettings()->getLog2HardDecim(); } if (deviceSettingsKeys.contains("log2SoftDecim")) { settings.m_log2SoftDecim = response.getXtrxMimoSettings()->getLog2SoftDecim(); } if (deviceSettingsKeys.contains("iqOrder")) { settings.m_iqOrder = response.getXtrxMimoSettings()->getIqOrder() != 0; } if (deviceSettingsKeys.contains("rxCenterFrequency")) { settings.m_rxCenterFrequency = response.getXtrxMimoSettings()->getRxCenterFrequency(); } if (deviceSettingsKeys.contains("dcBlock")) { settings.m_dcBlock = response.getXtrxMimoSettings()->getDcBlock() != 0; } if (deviceSettingsKeys.contains("iqCorrection")) { settings.m_iqCorrection = response.getXtrxMimoSettings()->getIqCorrection() != 0; } if (deviceSettingsKeys.contains("ncoEnableRx")) { settings.m_ncoEnableRx = response.getXtrxMimoSettings()->getNcoEnableRx() != 0; } if (deviceSettingsKeys.contains("ncoFrequencyRx")) { settings.m_ncoFrequencyRx = response.getXtrxMimoSettings()->getNcoFrequencyRx(); } if (deviceSettingsKeys.contains("antennaPathRx")) { settings.m_antennaPathRx = (XTRXMIMOSettings::RxAntenna) response.getXtrxMimoSettings()->getAntennaPathRx(); } // Rx0 if (deviceSettingsKeys.contains("lpfBWRx0")) { settings.m_lpfBWRx0 = response.getXtrxMimoSettings()->getLpfBwRx0(); } if (deviceSettingsKeys.contains("gainRx0")) { settings.m_gainRx0 = response.getXtrxMimoSettings()->getGainRx0(); } if (deviceSettingsKeys.contains("gainModeRx0")) { settings.m_gainModeRx0 = (XTRXMIMOSettings::GainMode) response.getXtrxMimoSettings()->getGainModeRx0(); } if (deviceSettingsKeys.contains("lnaGainRx0")) { settings.m_lnaGainRx0 = response.getXtrxMimoSettings()->getLnaGainRx0(); } if (deviceSettingsKeys.contains("tiaGainRx0")) { settings.m_tiaGainRx0 = response.getXtrxMimoSettings()->getTiaGainRx0(); } if (deviceSettingsKeys.contains("pgaGainRx0")) { settings.m_pgaGainRx0 = response.getXtrxMimoSettings()->getPgaGainRx0(); } if (deviceSettingsKeys.contains("pwrmodeRx0")) { settings.m_pwrmodeRx0 = response.getXtrxMimoSettings()->getPwrmodeRx0(); } // Rx1 if (deviceSettingsKeys.contains("lpfBWRx1")) { settings.m_lpfBWRx1 = response.getXtrxMimoSettings()->getLpfBwRx1(); } if (deviceSettingsKeys.contains("gainRx1")) { settings.m_gainRx1 = response.getXtrxMimoSettings()->getGainRx1(); } if (deviceSettingsKeys.contains("gainModeRx1")) { settings.m_gainModeRx1 = (XTRXMIMOSettings::GainMode) response.getXtrxMimoSettings()->getGainModeRx1(); } if (deviceSettingsKeys.contains("lnaGainRx1")) { settings.m_lnaGainRx1 = response.getXtrxMimoSettings()->getLnaGainRx1(); } if (deviceSettingsKeys.contains("tiaGainRx1")) { settings.m_tiaGainRx1 = response.getXtrxMimoSettings()->getTiaGainRx1(); } if (deviceSettingsKeys.contains("pgaGainRx1")) { settings.m_pgaGainRx1 = response.getXtrxMimoSettings()->getPgaGainRx1(); } if (deviceSettingsKeys.contains("pwrmodeRx1")) { settings.m_pwrmodeRx1 = response.getXtrxMimoSettings()->getPwrmodeRx1(); } // Tx if (deviceSettingsKeys.contains("txDevSampleRate")) { settings.m_txDevSampleRate = response.getXtrxMimoSettings()->getTxDevSampleRate(); } if (deviceSettingsKeys.contains("log2HardInterp")) { settings.m_log2HardInterp = response.getXtrxMimoSettings()->getLog2HardInterp(); } if (deviceSettingsKeys.contains("log2SoftInterp")) { settings.m_log2SoftInterp = response.getXtrxMimoSettings()->getLog2SoftInterp(); } if (deviceSettingsKeys.contains("txCenterFrequency")) { settings.m_txCenterFrequency = response.getXtrxMimoSettings()->getTxCenterFrequency(); } if (deviceSettingsKeys.contains("ncoEnableTx")) { settings.m_ncoEnableTx = response.getXtrxMimoSettings()->getNcoEnableTx() != 0; } if (deviceSettingsKeys.contains("ncoFrequencyTx")) { settings.m_ncoFrequencyTx = response.getXtrxMimoSettings()->getNcoFrequencyTx(); } if (deviceSettingsKeys.contains("antennaPathTx")) { settings.m_antennaPathTx = (XTRXMIMOSettings::TxAntenna) response.getXtrxMimoSettings()->getAntennaPathTx(); } // Tx0 if (deviceSettingsKeys.contains("lpfBWTx0")) { settings.m_lpfBWTx0 = response.getXtrxMimoSettings()->getLpfBwTx0(); } if (deviceSettingsKeys.contains("gainTx0")) { settings.m_gainTx0 = response.getXtrxMimoSettings()->getGainTx0(); } if (deviceSettingsKeys.contains("pwrmodeTx0")) { settings.m_pwrmodeRx0 = response.getXtrxMimoSettings()->getPwrmodeTx0(); } // Tx1 if (deviceSettingsKeys.contains("lpfBWTx1")) { settings.m_lpfBWTx1 = response.getXtrxMimoSettings()->getLpfBwTx1(); } if (deviceSettingsKeys.contains("gainTx1")) { settings.m_gainTx1 = response.getXtrxMimoSettings()->getGainTx1(); } if (deviceSettingsKeys.contains("pwrmodeTx1")) { settings.m_pwrmodeRx1 = response.getXtrxMimoSettings()->getPwrmodeTx1(); } } void XTRXMIMO::webapiFormatDeviceSettings( SWGSDRangel::SWGDeviceSettings& response, const XTRXMIMOSettings& settings) { // common response.getXtrxMimoSettings()->setExtClock(settings.m_extClock ? 1 : 0); response.getXtrxMimoSettings()->setExtClockFreq(settings.m_extClockFreq); response.getXtrxMimoSettings()->setGpioDir(settings.m_gpioDir & 0xFF); response.getXtrxMimoSettings()->setGpioPins(settings.m_gpioPins & 0xFF); response.getXtrxMimoSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0); if (response.getXtrxMimoSettings()->getReverseApiAddress()) { *response.getXtrxMimoSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress; } else { response.getXtrxMimoSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress)); } response.getXtrxMimoSettings()->setReverseApiPort(settings.m_reverseAPIPort); response.getXtrxMimoSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex); // Rx response.getXtrxMimoSettings()->setRxDevSampleRate(settings.m_rxDevSampleRate); response.getXtrxMimoSettings()->setLog2HardDecim(settings.m_log2HardDecim); response.getXtrxMimoSettings()->setLog2SoftDecim(settings.m_log2SoftDecim); response.getXtrxMimoSettings()->setIqOrder(settings.m_iqOrder ? 1 : 0); response.getXtrxMimoSettings()->setRxCenterFrequency(settings.m_rxCenterFrequency); response.getXtrxMimoSettings()->setDcBlock(settings.m_dcBlock ? 1 : 0); response.getXtrxMimoSettings()->setIqCorrection(settings.m_iqCorrection ? 1 : 0); response.getXtrxMimoSettings()->setNcoEnableRx(settings.m_ncoEnableRx ? 1 : 0); response.getXtrxMimoSettings()->setNcoFrequencyRx(settings.m_ncoFrequencyRx); response.getXtrxMimoSettings()->setAntennaPathRx((int) settings.m_antennaPathRx); // Rx0 response.getXtrxMimoSettings()->setLpfBwRx0(settings.m_lpfBWRx0); response.getXtrxMimoSettings()->setGainRx0(settings.m_gainRx0); response.getXtrxMimoSettings()->setGainModeRx0((int) settings.m_gainModeRx0); response.getXtrxMimoSettings()->setLnaGainRx0(settings.m_lnaGainRx0); response.getXtrxMimoSettings()->setTiaGainRx0(settings.m_tiaGainRx0); response.getXtrxMimoSettings()->setPgaGainRx0(settings.m_pgaGainRx0); response.getXtrxMimoSettings()->setPwrmodeRx0(settings.m_pwrmodeRx0); // Rx1 response.getXtrxMimoSettings()->setLpfBwRx1(settings.m_lpfBWRx1); response.getXtrxMimoSettings()->setGainRx1(settings.m_gainRx1); response.getXtrxMimoSettings()->setGainModeRx1((int) settings.m_gainModeRx1); response.getXtrxMimoSettings()->setLnaGainRx1(settings.m_lnaGainRx1); response.getXtrxMimoSettings()->setTiaGainRx1(settings.m_tiaGainRx1); response.getXtrxMimoSettings()->setPgaGainRx1(settings.m_pgaGainRx1); response.getXtrxMimoSettings()->setPwrmodeRx1(settings.m_pwrmodeRx1); // Tx response.getXtrxMimoSettings()->setTxDevSampleRate(settings.m_txDevSampleRate); response.getXtrxMimoSettings()->setLog2HardInterp(settings.m_log2HardInterp); response.getXtrxMimoSettings()->setLog2SoftInterp(settings.m_log2SoftInterp); response.getXtrxMimoSettings()->setTxCenterFrequency(settings.m_txCenterFrequency); response.getXtrxMimoSettings()->setNcoEnableTx(settings.m_ncoEnableTx ? 1 : 0); response.getXtrxMimoSettings()->setNcoFrequencyTx(settings.m_ncoFrequencyTx); response.getXtrxMimoSettings()->setAntennaPathTx((int) settings.m_antennaPathTx); // Tx0 response.getXtrxMimoSettings()->setLpfBwTx0(settings.m_lpfBWTx0); response.getXtrxMimoSettings()->setGainTx0(settings.m_gainTx0); response.getXtrxMimoSettings()->setPwrmodeTx0(settings.m_pwrmodeTx0); // Tx1 response.getXtrxMimoSettings()->setLpfBwTx1(settings.m_lpfBWTx1); response.getXtrxMimoSettings()->setGainTx1(settings.m_gainTx1); response.getXtrxMimoSettings()->setPwrmodeTx1(settings.m_pwrmodeTx1); } int XTRXMIMO::webapiReportGet( SWGSDRangel::SWGDeviceReport& response, QString& errorMessage) { (void) errorMessage; response.setXtrxInputReport(new SWGSDRangel::SWGXtrxInputReport()); response.getXtrxInputReport()->init(); webapiFormatDeviceReport(response); return 200; } int XTRXMIMO::webapiRunGet( int subsystemIndex, SWGSDRangel::SWGDeviceState& response, QString& errorMessage) { if ((subsystemIndex == 0) || (subsystemIndex == 1)) { m_deviceAPI->getDeviceEngineStateStr(*response.getState(), subsystemIndex); return 200; } else { errorMessage = QString("Subsystem invalid: must be 0 (Rx) or 1 (Tx)"); return 404; } } int XTRXMIMO::webapiRun( bool run, int subsystemIndex, SWGSDRangel::SWGDeviceState& response, QString& errorMessage) { if ((subsystemIndex == 0) || (subsystemIndex == 1)) { m_deviceAPI->getDeviceEngineStateStr(*response.getState(), subsystemIndex); MsgStartStop *message = MsgStartStop::create(run, subsystemIndex == 0); m_inputMessageQueue.push(message); if (m_guiMessageQueue) // forward to GUI if any { MsgStartStop *msgToGUI = MsgStartStop::create(run, subsystemIndex == 0); m_guiMessageQueue->push(msgToGUI); } return 200; } else { errorMessage = QString("Subsystem invalid: must be 0 (Rx) or 1 (Tx)"); return 404; } } void XTRXMIMO::webapiFormatDeviceReport(SWGSDRangel::SWGDeviceReport& response) { bool success = false; double temp = 0.0; bool gpsStatus = false; uint64_t fifolevelRx = 0; uint64_t fifolevelTx = 0; uint32_t fifosize = 1<<16; if (m_deviceShared.m_dev->getDevice()) { int ret = xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_RX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevelRx); success = (ret >= 0); ret = xtrx_val_get(m_deviceShared.m_dev->getDevice(), XTRX_TX, XTRX_CH_AB, XTRX_PERF_LLFIFO, &fifolevelTx); success = success & (ret >= 0); temp = m_deviceShared.get_board_temperature() / 256.0; gpsStatus = m_deviceShared.get_gps_status(); } response.getXtrxMimoReport()->setSuccess(success ? 1 : 0); response.getXtrxMimoReport()->setFifoSize(fifosize); response.getXtrxMimoReport()->setFifoFillRx(fifolevelRx); response.getXtrxMimoReport()->setFifoFillTx(fifolevelTx); response.getXtrxMimoReport()->setTemperature(temp); response.getXtrxMimoReport()->setGpsLock(gpsStatus ? 1 : 0); } void XTRXMIMO::webapiReverseSendSettings(const QList& deviceSettingsKeys, const XTRXMIMOSettings& settings, bool force) { SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings(); swgDeviceSettings->setDirection(2); // MIMO swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex()); swgDeviceSettings->setDeviceHwType(new QString("XTRX")); swgDeviceSettings->setXtrxMimoSettings(new SWGSDRangel::SWGXtrxMIMOSettings()); SWGSDRangel::SWGXtrxMIMOSettings *swgXTRXMIMOSettings = swgDeviceSettings->getXtrxMimoSettings(); // transfer data that has been modified. When force is on transfer all data except reverse API data // common if (deviceSettingsKeys.contains("extClock") || force) { swgXTRXMIMOSettings->setExtClock(settings.m_extClock ? 1 : 0); } if (deviceSettingsKeys.contains("extClock") || force) { swgXTRXMIMOSettings->setExtClockFreq(settings.m_extClockFreq); } if (deviceSettingsKeys.contains("gpioDir") || force) { swgXTRXMIMOSettings->setGpioDir(settings.m_gpioDir & 0xFF); } if (deviceSettingsKeys.contains("gpioPins") || force) { swgXTRXMIMOSettings->setGpioPins(settings.m_gpioPins & 0xFF); } // Rx if (deviceSettingsKeys.contains("rxDevSampleRate") || force) { swgXTRXMIMOSettings->setRxDevSampleRate(settings.m_rxDevSampleRate); } if (deviceSettingsKeys.contains("log2HardDecim") || force) { swgXTRXMIMOSettings->setLog2HardDecim(settings.m_log2HardDecim); } if (deviceSettingsKeys.contains("log2SoftDecim") || force) { swgXTRXMIMOSettings->setLog2SoftDecim(settings.m_log2SoftDecim); } if (deviceSettingsKeys.contains("iqOrder") || force) { swgXTRXMIMOSettings->setIqOrder(settings.m_iqOrder ? 1 : 0); } if (deviceSettingsKeys.contains("rxCenterFrequency") || force) { swgXTRXMIMOSettings->setRxCenterFrequency(settings.m_rxCenterFrequency); } if (deviceSettingsKeys.contains("dcBlock") || force) { swgXTRXMIMOSettings->setDcBlock(settings.m_dcBlock ? 1 : 0); } if (deviceSettingsKeys.contains("iqCorrection") || force) { swgXTRXMIMOSettings->setIqCorrection(settings.m_iqCorrection ? 1 : 0); } if (deviceSettingsKeys.contains("ncoEnableRx") || force) { swgXTRXMIMOSettings->setNcoEnableRx(settings.m_ncoEnableRx ? 1 : 0); } if (deviceSettingsKeys.contains("ncoFrequencyRx") || force) { swgXTRXMIMOSettings->setNcoFrequencyRx(settings.m_ncoFrequencyRx); } if (deviceSettingsKeys.contains("antennaPathRx") || force) { swgXTRXMIMOSettings->setAntennaPathRx((int) settings.m_antennaPathRx); } // Rx0 if (deviceSettingsKeys.contains("lpfBWRx0") || force) { swgXTRXMIMOSettings->setLpfBwRx0(settings.m_lpfBWRx0); } if (deviceSettingsKeys.contains("gainRx0") || force) { swgXTRXMIMOSettings->setGainRx0(settings.m_gainRx0); } if (deviceSettingsKeys.contains("gainModeRx0") || force) { swgXTRXMIMOSettings->setGainModeRx0((int) settings.m_gainModeRx0); } if (deviceSettingsKeys.contains("lnaGainRx0") || force) { swgXTRXMIMOSettings->setLnaGainRx0(settings.m_lnaGainRx0); } if (deviceSettingsKeys.contains("tiaGainRx0") || force) { swgXTRXMIMOSettings->setTiaGainRx0(settings.m_tiaGainRx0); } if (deviceSettingsKeys.contains("pgaGainRx0") || force) { swgXTRXMIMOSettings->setPgaGainRx0(settings.m_pgaGainRx0); } if (deviceSettingsKeys.contains("pwrmodeRx0") || force) { swgXTRXMIMOSettings->setPwrmodeRx0(settings.m_pwrmodeRx0); } // Rx1 if (deviceSettingsKeys.contains("lpfBWRx1") || force) { swgXTRXMIMOSettings->setLpfBwRx1(settings.m_lpfBWRx1); } if (deviceSettingsKeys.contains("gainRx1") || force) { swgXTRXMIMOSettings->setGainRx1(settings.m_gainRx1); } if (deviceSettingsKeys.contains("gainModeRx1") || force) { swgXTRXMIMOSettings->setGainModeRx1((int) settings.m_gainModeRx1); } if (deviceSettingsKeys.contains("lnaGainRx1") || force) { swgXTRXMIMOSettings->setLnaGainRx1(settings.m_lnaGainRx1); } if (deviceSettingsKeys.contains("tiaGainRx1") || force) { swgXTRXMIMOSettings->setTiaGainRx1(settings.m_tiaGainRx1); } if (deviceSettingsKeys.contains("pgaGainRx1") || force) { swgXTRXMIMOSettings->setPgaGainRx1(settings.m_pgaGainRx1); } if (deviceSettingsKeys.contains("pwrmodeRx1") || force) { swgXTRXMIMOSettings->setPwrmodeRx1(settings.m_pwrmodeRx1); } // Tx if (deviceSettingsKeys.contains("txDevSampleRate") || force) { swgXTRXMIMOSettings->setTxDevSampleRate(settings.m_txDevSampleRate); } if (deviceSettingsKeys.contains("log2HardInterp") || force) { swgXTRXMIMOSettings->setLog2HardInterp(settings.m_log2HardInterp); } if (deviceSettingsKeys.contains("log2SoftInterp") || force) { swgXTRXMIMOSettings->setLog2SoftInterp(settings.m_log2SoftInterp); } if (deviceSettingsKeys.contains("txCenterFrequency") || force) { swgXTRXMIMOSettings->setTxCenterFrequency(settings.m_txCenterFrequency); } if (deviceSettingsKeys.contains("ncoEnableTx") || force) { swgXTRXMIMOSettings->setNcoEnableTx(settings.m_ncoEnableTx ? 1 : 0); } if (deviceSettingsKeys.contains("ncoFrequencyTx") || force) { swgXTRXMIMOSettings->setNcoFrequencyTx(settings.m_ncoFrequencyTx); } if (deviceSettingsKeys.contains("antennaPathTx") || force) { swgXTRXMIMOSettings->setAntennaPathTx((int) settings.m_antennaPathTx); } // Tx0 if (deviceSettingsKeys.contains("lpfBWTx0") || force) { swgXTRXMIMOSettings->setLpfBwTx0(settings.m_lpfBWTx0); } if (deviceSettingsKeys.contains("gainTx0") || force) { swgXTRXMIMOSettings->setGainTx0(settings.m_gainTx0); } if (deviceSettingsKeys.contains("pwrmodeTx0") || force) { swgXTRXMIMOSettings->setPwrmodeTx0(settings.m_pwrmodeTx0); } // Tx0 if (deviceSettingsKeys.contains("lpfBWTx0") || force) { swgXTRXMIMOSettings->setLpfBwTx0(settings.m_lpfBWTx0); } if (deviceSettingsKeys.contains("gainTx0") || force) { swgXTRXMIMOSettings->setGainTx0(settings.m_gainTx0); } if (deviceSettingsKeys.contains("pwrmodeTx0") || force) { swgXTRXMIMOSettings->setPwrmodeTx0(settings.m_pwrmodeTx0); } // Tx1 if (deviceSettingsKeys.contains("lpfBWTx1") || force) { swgXTRXMIMOSettings->setLpfBwTx1(settings.m_lpfBWTx1); } if (deviceSettingsKeys.contains("gainTx1") || force) { swgXTRXMIMOSettings->setGainTx1(settings.m_gainTx1); } if (deviceSettingsKeys.contains("pwrmodeTx1") || force) { swgXTRXMIMOSettings->setPwrmodeTx1(settings.m_pwrmodeTx1); } QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/settings") .arg(settings.m_reverseAPIAddress) .arg(settings.m_reverseAPIPort) .arg(settings.m_reverseAPIDeviceIndex); m_networkRequest.setUrl(QUrl(deviceSettingsURL)); m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); QBuffer *buffer = new QBuffer(); buffer->open((QBuffer::ReadWrite)); buffer->write(swgDeviceSettings->asJson().toUtf8()); buffer->seek(0); // Always use PATCH to avoid passing reverse API settings QNetworkReply *reply = m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer); buffer->setParent(reply); delete swgDeviceSettings; } void XTRXMIMO::webapiReverseSendStartStop(bool start) { SWGSDRangel::SWGDeviceSettings *swgDeviceSettings = new SWGSDRangel::SWGDeviceSettings(); swgDeviceSettings->setDirection(2); // MIMO swgDeviceSettings->setOriginatorIndex(m_deviceAPI->getDeviceSetIndex()); swgDeviceSettings->setDeviceHwType(new QString("XTRX")); QString deviceSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/device/run") .arg(m_settings.m_reverseAPIAddress) .arg(m_settings.m_reverseAPIPort) .arg(m_settings.m_reverseAPIDeviceIndex); m_networkRequest.setUrl(QUrl(deviceSettingsURL)); m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); QBuffer *buffer = new QBuffer(); buffer->open((QBuffer::ReadWrite)); buffer->write(swgDeviceSettings->asJson().toUtf8()); buffer->seek(0); QNetworkReply *reply; if (start) { reply = m_networkManager->sendCustomRequest(m_networkRequest, "POST", buffer); } else { reply = m_networkManager->sendCustomRequest(m_networkRequest, "DELETE", buffer); } buffer->setParent(reply); delete swgDeviceSettings; } void XTRXMIMO::networkManagerFinished(QNetworkReply *reply) { QNetworkReply::NetworkError replyError = reply->error(); if (replyError) { qWarning() << "XTRXMIMO::networkManagerFinished:" << " error(" << (int) replyError << "): " << replyError << ": " << reply->errorString(); } else { QString answer = reply->readAll(); answer.chop(1); // remove last \n qDebug("XTRXMIMO::networkManagerFinished: reply:\n%s", answer.toStdString().c_str()); } reply->deleteLater(); }