/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see <http://www.gnu.org/licenses/>. // /////////////////////////////////////////////////////////////////////////////////// #include "hackrfoutput.h" #include <string.h> #include <errno.h> #include <QDebug> #include "util/simpleserializer.h" #include "dsp/dspcommands.h" #include "dsp/dspengine.h" #include "device/devicesourceapi.h" #include "device/devicesinkapi.h" #include "hackrf/devicehackrfshared.h" #include "hackrfoutputgui.h" #include "hackrfoutputthread.h" MESSAGE_CLASS_DEFINITION(HackRFOutput::MsgConfigureHackRF, Message) MESSAGE_CLASS_DEFINITION(HackRFOutput::MsgReportHackRF, Message) HackRFOutput::HackRFOutput(DeviceSinkAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_dev(0), m_hackRFThread(0), m_deviceDescription("HackRFOutput"), m_running(false) { openDevice(); m_deviceAPI->setBuddySharedPtr(&m_sharedParams); } HackRFOutput::~HackRFOutput() { if (m_running) stop(); closeDevice(); m_deviceAPI->setBuddySharedPtr(0); } void HackRFOutput::destroy() { delete this; } bool HackRFOutput::openDevice() { if (m_dev != 0) { closeDevice(); } m_sampleSourceFifo.resize(m_settings.m_devSampleRate/(1<<(m_settings.m_log2Interp <= 4 ? m_settings.m_log2Interp : 4))); if (m_deviceAPI->getSourceBuddies().size() > 0) { DeviceSourceAPI *buddy = m_deviceAPI->getSourceBuddies()[0]; DeviceHackRFParams *buddySharedParams = (DeviceHackRFParams *) buddy->getBuddySharedPtr(); if (buddySharedParams == 0) { qCritical("HackRFOutput::openDevice: could not get shared parameters from buddy"); return false; } if ((m_dev = buddySharedParams->m_dev) == 0) // device is not opened by buddy { qCritical("HackRFOutput::openDevice: could not get HackRF handle from buddy"); return false; } m_sharedParams = *(buddySharedParams); // copy parameters from buddy m_sharedParams.m_dev = m_dev; } else { if ((m_dev = DeviceHackRF::open_hackrf(qPrintable(m_deviceAPI->getSampleSinkSerial()))) == 0) { qCritical("HackRFOutput::openDevice: could not open HackRF %s", qPrintable(m_deviceAPI->getSampleSinkSerial())); return false; } m_sharedParams.m_dev = m_dev; } return true; } bool HackRFOutput::start() { if (!m_dev) { return false; } if (m_running) stop(); if((m_hackRFThread = new HackRFOutputThread(m_dev, &m_sampleSourceFifo)) == 0) { qFatal("HackRFOutput::start: out of memory"); stop(); return false; } // mutexLocker.unlock(); applySettings(m_settings, true); m_hackRFThread->setLog2Interpolation(m_settings.m_log2Interp); m_hackRFThread->startWork(); qDebug("HackRFOutput::start: started"); m_running = true; return true; } void HackRFOutput::closeDevice() { if (m_deviceAPI->getSourceBuddies().size() == 0) { qDebug("HackRFOutput::closeDevice: closing device since Rx side is not open"); if(m_dev != 0) // close HackRF { hackrf_close(m_dev); //hackrf_exit(); // TODO: this may not work if several HackRF Devices are running concurrently. It should be handled globally in the application } } m_sharedParams.m_dev = 0; m_dev = 0; } void HackRFOutput::stop() { qDebug("HackRFOutput::stop"); // QMutexLocker mutexLocker(&m_mutex); if(m_hackRFThread != 0) { m_hackRFThread->stopWork(); delete m_hackRFThread; m_hackRFThread = 0; } m_running = false; } const QString& HackRFOutput::getDeviceDescription() const { return m_deviceDescription; } int HackRFOutput::getSampleRate() const { int rate = m_settings.m_devSampleRate; return (rate / (1<<m_settings.m_log2Interp)); } quint64 HackRFOutput::getCenterFrequency() const { return m_settings.m_centerFrequency; } bool HackRFOutput::handleMessage(const Message& message) { if (MsgConfigureHackRF::match(message)) { MsgConfigureHackRF& conf = (MsgConfigureHackRF&) message; qDebug() << "HackRFOutput::handleMessage: MsgConfigureHackRF"; bool success = applySettings(conf.getSettings(), conf.getForce()); if (!success) { qDebug("HackRFOutput::handleMessage: MsgConfigureHackRF: config error"); } return true; } else if (DeviceHackRFShared::MsgConfigureFrequencyDelta::match(message)) { DeviceHackRFShared::MsgConfigureFrequencyDelta& conf = (DeviceHackRFShared::MsgConfigureFrequencyDelta&) message; HackRFOutputSettings newSettings = m_settings; newSettings.m_centerFrequency = m_settings.m_centerFrequency + conf.getFrequencyDelta(); qDebug() << "HackRFOutput::handleMessage: DeviceHackRFShared::MsgConfigureFrequencyDelta: newFreq: " << newSettings.m_centerFrequency; applySettings(newSettings, false); return true; } else { return false; } } void HackRFOutput::setCenterFrequency(quint64 freq_hz, qint32 LOppmTenths) { qint64 df = ((qint64)freq_hz * LOppmTenths) / 10000000LL; freq_hz += df; hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast<uint64_t>(freq_hz)); if (rc != HACKRF_SUCCESS) { qWarning("HackRFOutput::setCenterFrequency: could not frequency to %llu Hz", freq_hz); } else { qWarning("HackRFOutput::setCenterFrequency: frequency set to %llu Hz", freq_hz); } } bool HackRFOutput::applySettings(const HackRFOutputSettings& settings, bool force) { // QMutexLocker mutexLocker(&m_mutex); bool forwardChange = false; bool suspendThread = false; bool threadWasRunning = false; hackrf_error rc; qDebug() << "HackRFOutput::applySettings"; if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || (m_settings.m_log2Interp != settings.m_log2Interp) || force) { suspendThread = true; } if (suspendThread) { if (m_hackRFThread) { if (m_hackRFThread->isRunning()) { m_hackRFThread->stopWork(); threadWasRunning = true; } } } if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || (m_settings.m_log2Interp != settings.m_log2Interp) || force) { forwardChange = true; int fifoSize = std::max( (int) ((settings.m_devSampleRate/(1<<settings.m_log2Interp)) * DeviceHackRFShared::m_sampleFifoLengthInSeconds), DeviceHackRFShared::m_sampleFifoMinSize); m_sampleSourceFifo.resize(fifoSize); } if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force) { if (m_dev != 0) { rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, settings.m_devSampleRate, 1); if (rc != HACKRF_SUCCESS) { qCritical("HackRFOutput::applySettings: could not set sample rate to %llu S/s: %s", settings.m_devSampleRate, hackrf_error_name(rc)); } else { qDebug("HackRFOutput::applySettings: sample rate set to %llu S/s", settings.m_devSampleRate); } } } if ((m_settings.m_log2Interp != settings.m_log2Interp) || force) { if (m_hackRFThread != 0) { m_hackRFThread->setLog2Interpolation(settings.m_log2Interp); qDebug() << "HackRFOutput: set interpolation to " << (1<<settings.m_log2Interp); } } if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) || (m_settings.m_LOppmTenths != settings.m_LOppmTenths)) { if (m_dev != 0) { setCenterFrequency(settings.m_centerFrequency, settings.m_LOppmTenths); qDebug() << "HackRFOutput::applySettings: center freq: " << settings.m_centerFrequency << " Hz LOppm: " << settings.m_LOppmTenths; } forwardChange = true; } if ((m_settings.m_vgaGain != settings.m_vgaGain) || force) { if (m_dev != 0) { rc = (hackrf_error) hackrf_set_txvga_gain(m_dev, settings.m_vgaGain); if(rc != HACKRF_SUCCESS) { qDebug("HackRFOutput::applySettings: hackrf_set_txvga_gain failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFOutput:applySettings: TxVGA gain set to " << settings.m_vgaGain; } } } if ((m_settings.m_bandwidth != settings.m_bandwidth) || force) { if (m_dev != 0) { uint32_t bw_index = hackrf_compute_baseband_filter_bw_round_down_lt(settings.m_bandwidth + 1); // +1 so the round down to lower than yields desired bandwidth rc = (hackrf_error) hackrf_set_baseband_filter_bandwidth(m_dev, bw_index); if (rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_baseband_filter_bandwidth failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: Baseband BW filter set to " << settings.m_bandwidth << " Hz"; } } } if ((m_settings.m_biasT != settings.m_biasT) || force) { if (m_dev != 0) { rc = (hackrf_error) hackrf_set_antenna_enable(m_dev, (settings.m_biasT ? 1 : 0)); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_antenna_enable failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: bias tee set to " << settings.m_biasT; } } } if ((m_settings.m_lnaExt != settings.m_lnaExt) || force) { if (m_dev != 0) { rc = (hackrf_error) hackrf_set_amp_enable(m_dev, (settings.m_lnaExt ? 1 : 0)); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_amp_enable failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: extra LNA set to " << settings.m_lnaExt; } } } if (threadWasRunning) { m_hackRFThread->startWork(); } m_settings.m_devSampleRate = settings.m_devSampleRate; m_settings.m_log2Interp = settings.m_log2Interp; m_settings.m_centerFrequency = settings.m_centerFrequency; m_settings.m_LOppmTenths = settings.m_LOppmTenths; m_settings.m_vgaGain = settings.m_vgaGain; m_settings.m_bandwidth = settings.m_bandwidth; m_settings.m_biasT = settings.m_biasT; m_settings.m_lnaExt = settings.m_lnaExt; if (forwardChange) { int sampleRate = m_settings.m_devSampleRate/(1<<m_settings.m_log2Interp); DSPSignalNotification *notif = new DSPSignalNotification(sampleRate, m_settings.m_centerFrequency); m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif); } return true; }