/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/inthalfbandfilter.h" #include "dsp/dspcommands.h" #include #include MESSAGE_CLASS_DEFINITION(UpChannelizer::MsgChannelizerNotification, Message) UpChannelizer::UpChannelizer(BasebandSampleSource* sampleSource) : m_sampleSource(sampleSource), m_outputSampleRate(0), m_requestedInputSampleRate(0), m_requestedCenterFrequency(0), m_currentInputSampleRate(0), m_currentCenterFrequency(0) { QString name = "UpChannelizer(" + m_sampleSource->objectName() + ")"; setObjectName(name); } UpChannelizer::~UpChannelizer() { freeFilterChain(); } void UpChannelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency) { Message* cmd = new DSPConfigureChannelizer(sampleRate, centerFrequency); messageQueue->push(cmd); } void UpChannelizer::pull(Sample& sample) { if(m_sampleSource == 0) { m_sampleBuffer.clear(); return; } if (m_filterStages.size() == 0) // optimization when no downsampling is done anyway { m_sampleSource->pull(sample); } else { m_mutex.lock(); // TODO: handle multiple stages FilterStages::iterator stage = m_filterStages.begin(); if ((*stage)->work(&m_sampleIn, &sample)) { m_sampleSource->pull(m_sampleIn); } m_mutex.unlock(); } } void UpChannelizer::start() { if (m_sampleSource != 0) { qDebug() << "UpChannelizer::start: thread: " << thread() << " m_outputSampleRate: " << m_outputSampleRate << " m_requestedInputSampleRate: " << m_requestedInputSampleRate << " m_requestedCenterFrequency: " << m_requestedCenterFrequency; m_sampleSource->start(); } } void UpChannelizer::stop() { if(m_sampleSource != 0) m_sampleSource->stop(); } bool UpChannelizer::handleMessage(const Message& cmd) { qDebug() << "UpChannelizer::handleMessage: " << cmd.getIdentifier(); // TODO: apply changes only if input sample rate or requested output sample rate change. Change of center frequency has no impact. if (DSPSignalNotification::match(cmd)) { DSPSignalNotification& notif = (DSPSignalNotification&) cmd; m_outputSampleRate = notif.getSampleRate(); qDebug() << "UpChannelizer::handleMessage: DSPSignalNotification: m_outputSampleRate: " << m_outputSampleRate; applyConfiguration(); if (m_sampleSource != 0) { m_sampleSource->handleMessage(notif); } emit outputSampleRateChanged(); return true; } else if (DSPConfigureChannelizer::match(cmd)) { DSPConfigureChannelizer& chan = (DSPConfigureChannelizer&) cmd; m_requestedInputSampleRate = chan.getSampleRate(); m_requestedCenterFrequency = chan.getCenterFrequency(); qDebug() << "UpChannelizer::handleMessage: DSPConfigureChannelizer:" << " m_requestedInputSampleRate: " << m_requestedInputSampleRate << " m_requestedCenterFrequency: " << m_requestedCenterFrequency; applyConfiguration(); return true; } else { if (m_sampleSource != 0) { return m_sampleSource->handleMessage(cmd); } else { return false; } } } void UpChannelizer::applyConfiguration() { if (m_outputSampleRate == 0) { qDebug() << "UpChannelizer::applyConfiguration: m_outputSampleRate=0 aborting"; return; } m_mutex.lock(); freeFilterChain(); m_currentCenterFrequency = createFilterChain( m_outputSampleRate / -2, m_outputSampleRate / 2, m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2); m_mutex.unlock(); m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size()); qDebug() << "UpChannelizer::applyConfiguration in=" << m_outputSampleRate << ", req=" << m_requestedInputSampleRate << ", out=" << m_currentInputSampleRate << ", fc=" << m_currentCenterFrequency; if (m_sampleSource != 0) { MsgChannelizerNotification notif(m_currentInputSampleRate, m_currentCenterFrequency); m_sampleSource->handleMessage(notif); } } UpChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilter), m_workFunction(0) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilter::workInterpolateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilter::workInterpolateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilter::workInterpolateUpperHalf; break; } } UpChannelizer::FilterStage::~FilterStage() { delete m_filter; } bool UpChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const { //qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd); if(sigEnd <= sigStart) return false; if(chanEnd <= chanStart) return false; return (sigStart <= chanStart) && (sigEnd >= chanEnd); } Real UpChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real safetyMargin = sigBw / 20; Real rot = sigBw / 4; safetyMargin = 0; //fprintf(stderr, "Channelizer::createFilterChain: "); //fprintf(stderr, "Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f, Safety %.1f\n", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin); #if 1 // check if it fits into the left half if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) { //fprintf(stderr, "-> take left half (rotate by +1/4 and decimate by 2)\n"); m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } // check if it fits into the right half if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) { //fprintf(stderr, "-> take right half (rotate by -1/4 and decimate by 2)\n"); m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } // check if it fits into the center // Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) { if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd)) { //fprintf(stderr, "-> take center half (decimate by 2)\n"); m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); // Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd); return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd); } #endif Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); //fprintf(stderr, "-> complete (final BW %.1f, frequency offset %.1f)\n", sigBw, ofs); return ofs; } void UpChannelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); }