/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "boost/format.hpp" #include #include #include "SWGChannelSettings.h" #include "SWGBFMDemodSettings.h" #include "SWGChannelReport.h" #include "SWGBFMDemodReport.h" #include "SWGRDSReport.h" #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/downchannelizer.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/dspcommands.h" #include "device/devicesourceapi.h" #include "util/db.h" #include "rdsparser.h" #include "bfmdemod.h" MESSAGE_CLASS_DEFINITION(BFMDemod::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(BFMDemod::MsgReportChannelSampleRateChanged, Message) MESSAGE_CLASS_DEFINITION(BFMDemod::MsgConfigureBFMDemod, Message) const QString BFMDemod::m_channelIdURI = "sdrangel.channel.bfm"; const QString BFMDemod::m_channelId = "BFMDemod"; const Real BFMDemod::default_deemphasis = 50.0; // 50 us const int BFMDemod::m_udpBlockSize = 512; BFMDemod::BFMDemod(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_inputSampleRate(384000), m_inputFrequencyOffset(0), m_audioFifo(250000), m_settingsMutex(QMutex::Recursive), m_pilotPLL(19000/384000, 50/384000, 0.01), m_deemphasisFilterX(default_deemphasis * 48000 * 1.0e-6), m_deemphasisFilterY(default_deemphasis * 48000 * 1.0e-6), m_fmExcursion(default_excursion) { setObjectName(m_channelId); DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo, getInputMessageQueue()); m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getOutputSampleRate(); m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; m_squelchLevel = 0; m_squelchState = 0; m_interpolatorDistance = 0.0f; m_interpolatorDistanceRemain = 0.0f; m_interpolatorRDSDistance = 0.0f; m_interpolatorRDSDistanceRemain = 0.0f; m_interpolatorStereoDistance = 0.0f; m_interpolatorStereoDistanceRemain = 0.0f; m_sampleSink = 0; m_m1Arg = 0; m_rfFilter = new fftfilt(-50000.0 / 384000.0, 50000.0 / 384000.0, filtFftLen); m_deemphasisFilterX.configure(default_deemphasis * m_audioSampleRate * 1.0e-6); m_deemphasisFilterY.configure(default_deemphasis * m_audioSampleRate * 1.0e-6); m_phaseDiscri.setFMScaling(384000/m_fmExcursion); m_audioBuffer.resize(16384); m_audioBufferFill = 0; applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); } BFMDemod::~BFMDemod() { DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo); m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; delete m_rfFilter; } void BFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused))) { Complex ci, cs, cr; fftfilt::cmplx *rf; int rf_out; double msq; Real demod; m_sampleBuffer.clear(); m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real() / SDR_RX_SCALEF, it->imag() / SDR_RX_SCALEF); c *= m_nco.nextIQ(); rf_out = m_rfFilter->runFilt(c, &rf); // filter RF before demod for (int i =0 ; i m_magsqPeak) { m_magsqPeak = msq; } m_magsqCount++; // m_movingAverage.feed(msq); if(m_magsq >= m_squelchLevel) { m_squelchState = m_settings.m_rfBandwidth / 20; // decay rate } if(m_squelchState > 0) { m_squelchState--; //demod = phaseDiscriminator2(rf[i], msq); demod = m_phaseDiscri.phaseDiscriminator(rf[i]); } else { demod = 0; } if (!m_settings.m_showPilot) { m_sampleBuffer.push_back(Sample(demod * SDR_RX_SCALEF, 0.0)); } if (m_settings.m_rdsActive) { //Complex r(demod * 2.0 * std::cos(3.0 * m_pilotPLLSamples[3]), 0.0); Complex r(demod * 2.0 * std::cos(3.0 * m_pilotPLLSamples[3]), 0.0); if (m_interpolatorRDS.decimate(&m_interpolatorRDSDistanceRemain, r, &cr)) { bool bit; if (m_rdsDemod.process(cr.real(), bit)) { if (m_rdsDecoder.frameSync(bit)) { m_rdsParser.parseGroup(m_rdsDecoder.getGroup()); } } m_interpolatorRDSDistanceRemain += m_interpolatorRDSDistance; } } Real sampleStereo = 0.0f; // Process stereo if stereo mode is selected if (m_settings.m_audioStereo) { m_pilotPLL.process(demod, m_pilotPLLSamples); if (m_settings.m_showPilot) { m_sampleBuffer.push_back(Sample(m_pilotPLLSamples[1] * SDR_RX_SCALEF, 0.0)); // debug 38 kHz pilot } if (m_settings.m_lsbStereo) { // 1.17 * 0.7 = 0.819 Complex s(demod * m_pilotPLLSamples[1], demod * m_pilotPLLSamples[2]); if (m_interpolatorStereo.decimate(&m_interpolatorStereoDistanceRemain, s, &cs)) { sampleStereo = cs.real() + cs.imag(); m_interpolatorStereoDistanceRemain += m_interpolatorStereoDistance; } } else { Complex s(demod * 1.17 * m_pilotPLLSamples[1], 0); if (m_interpolatorStereo.decimate(&m_interpolatorStereoDistanceRemain, s, &cs)) { sampleStereo = cs.real(); m_interpolatorStereoDistanceRemain += m_interpolatorStereoDistance; } } } Complex e(demod, 0); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, e, &ci)) { if (m_settings.m_audioStereo) { Real deemph_l, deemph_r; // Pre-emphasis is applied on each channel before multiplexing m_deemphasisFilterX.process(ci.real() + sampleStereo, deemph_l); m_deemphasisFilterY.process(ci.real() - sampleStereo, deemph_r); m_audioBuffer[m_audioBufferFill].l = (qint16)(deemph_l * (1<<12) * m_settings.m_volume); m_audioBuffer[m_audioBufferFill].r = (qint16)(deemph_r * (1<<12) * m_settings.m_volume); } else { Real deemph; m_deemphasisFilterX.process(ci.real(), deemph); quint16 sample = (qint16)(deemph * (1<<12) * m_settings.m_volume); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; } ++m_audioBufferFill; if(m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("BFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if(m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("BFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } if(m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), true); } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void BFMDemod::start() { m_squelchState = 0; m_audioFifo.clear(); m_phaseDiscri.reset(); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); } void BFMDemod::stop() { } bool BFMDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "BFMDemod::handleMessage: MsgChannelizerNotification:" << " inputSampleRate: " << notif.getSampleRate() << " inputFrequencyOffset: " << notif.getFrequencyOffset(); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); if (getMessageQueueToGUI()) { MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create(getSampleRate()); getMessageQueueToGUI()->push(msg); } return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "BFMDemod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureBFMDemod::match(cmd)) { MsgConfigureBFMDemod& cfg = (MsgConfigureBFMDemod&) cmd; qDebug() << "BFMDemod::handleMessage: MsgConfigureBFMDemod"; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (DSPConfigureAudio::match(cmd)) { DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd; uint32_t sampleRate = cfg.getSampleRate(); qDebug() << "BFMDemod::handleMessage: DSPConfigureAudio:" << " sampleRate: " << sampleRate; if (sampleRate != m_audioSampleRate) { applyAudioSampleRate(sampleRate); } return true; } else if (BasebandSampleSink::MsgThreadedSink::match(cmd)) { return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { qDebug() << "BFMDemod::handleMessage: passed: " << cmd.getIdentifier(); if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void BFMDemod::applyAudioSampleRate(int sampleRate) { qDebug("BFMDemod::applyAudioSampleRate: %d", sampleRate); m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, m_settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_inputSampleRate / sampleRate; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) sampleRate; m_interpolatorStereo.create(16, m_inputSampleRate, m_settings.m_afBandwidth); m_interpolatorStereoDistanceRemain = (Real) m_inputSampleRate / sampleRate; m_interpolatorStereoDistance = (Real) m_inputSampleRate / (Real) sampleRate; m_deemphasisFilterX.configure(default_deemphasis * sampleRate * 1.0e-6); m_deemphasisFilterY.configure(default_deemphasis * sampleRate * 1.0e-6); m_settingsMutex.unlock(); m_audioSampleRate = sampleRate; } void BFMDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "BFMDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if((inputFrequencyOffset != m_inputFrequencyOffset) || (inputSampleRate != m_inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((inputSampleRate != m_inputSampleRate) || force) { m_pilotPLL.configure(19000.0/inputSampleRate, 50.0/inputSampleRate, 0.01); m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, m_settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) inputSampleRate / m_audioSampleRate; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_audioSampleRate; m_interpolatorStereo.create(16, inputSampleRate, m_settings.m_afBandwidth); m_interpolatorStereoDistanceRemain = (Real) inputSampleRate / m_audioSampleRate; m_interpolatorStereoDistance = (Real) inputSampleRate / (Real) m_audioSampleRate; m_interpolatorRDS.create(4, inputSampleRate, 600.0); m_interpolatorRDSDistanceRemain = (Real) inputSampleRate / 250000.0; m_interpolatorRDSDistance = (Real) inputSampleRate / 250000.0; Real lowCut = -(m_settings.m_rfBandwidth / 2.0) / inputSampleRate; Real hiCut = (m_settings.m_rfBandwidth / 2.0) / inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_phaseDiscri.setFMScaling(inputSampleRate / m_fmExcursion); m_settingsMutex.unlock(); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void BFMDemod::applySettings(const BFMDemodSettings& settings, bool force) { qDebug() << "BFMDemod::applySettings: MsgConfigureBFMDemod:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_volume: " << settings.m_volume << " m_squelch: " << settings.m_squelch << " m_audioStereo: " << settings.m_audioStereo << " m_lsbStereo: " << settings.m_lsbStereo << " m_showPilot: " << settings.m_showPilot << " m_rdsActive: " << settings.m_rdsActive << " m_audioDeviceName: " << settings.m_audioDeviceName << " force: " << force; if ((settings.m_audioStereo && (settings.m_audioStereo != m_settings.m_audioStereo)) || force) { m_pilotPLL.configure(19000.0/m_inputSampleRate, 50.0/m_inputSampleRate, 0.01); } if((settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_inputSampleRate / m_audioSampleRate; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) m_audioSampleRate; m_interpolatorStereo.create(16, m_inputSampleRate, settings.m_afBandwidth); m_interpolatorStereoDistanceRemain = (Real) m_inputSampleRate / m_audioSampleRate; m_interpolatorStereoDistance = (Real) m_inputSampleRate / (Real) m_audioSampleRate; m_interpolatorRDS.create(4, m_inputSampleRate, 600.0); m_interpolatorRDSDistanceRemain = (Real) m_inputSampleRate / 250000.0; m_interpolatorRDSDistance = (Real) m_inputSampleRate / 250000.0; m_settingsMutex.unlock(); } if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || (settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || force) { m_settingsMutex.lock(); Real lowCut = -(settings.m_rfBandwidth / 2.0) / m_inputSampleRate; Real hiCut = (settings.m_rfBandwidth / 2.0) / m_inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_phaseDiscri.setFMScaling(m_inputSampleRate / m_fmExcursion); m_settingsMutex.unlock(); } if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { m_settingsMutex.lock(); qDebug() << "BFMDemod::handleMessage: m_lowpass.create"; m_lowpass.create(21, m_audioSampleRate, settings.m_afBandwidth); m_settingsMutex.unlock(); } if ((settings.m_squelch != m_settings.m_squelch) || force) { qDebug() << "BFMDemod::handleMessage: set m_squelchLevel"; m_squelchLevel = std::pow(10.0, settings.m_squelch / 20.0); m_squelchLevel *= m_squelchLevel; } if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force) { AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager(); int audioDeviceIndex = audioDeviceManager->getOutputDeviceIndex(settings.m_audioDeviceName); //qDebug("AMDemod::applySettings: audioDeviceName: %s audioDeviceIndex: %d", qPrintable(settings.m_audioDeviceName), audioDeviceIndex); audioDeviceManager->addAudioSink(&m_audioFifo, getInputMessageQueue(), audioDeviceIndex); uint32_t audioSampleRate = audioDeviceManager->getOutputSampleRate(audioDeviceIndex); if (m_audioSampleRate != audioSampleRate) { applyAudioSampleRate(audioSampleRate); } } m_settings = settings; } QByteArray BFMDemod::serialize() const { return m_settings.serialize(); } bool BFMDemod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureBFMDemod *msg = MsgConfigureBFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureBFMDemod *msg = MsgConfigureBFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } } int BFMDemod::webapiSettingsGet( SWGSDRangel::SWGChannelSettings& response, QString& errorMessage __attribute__((unused))) { response.setBfmDemodSettings(new SWGSDRangel::SWGBFMDemodSettings()); response.getBfmDemodSettings()->init(); webapiFormatChannelSettings(response, m_settings); return 200; } int BFMDemod::webapiSettingsPutPatch( bool force, const QStringList& channelSettingsKeys, SWGSDRangel::SWGChannelSettings& response, QString& errorMessage __attribute__((unused))) { BFMDemodSettings settings = m_settings; bool frequencyOffsetChanged = false; if (channelSettingsKeys.contains("inputFrequencyOffset")) { settings.m_inputFrequencyOffset = response.getBfmDemodSettings()->getInputFrequencyOffset(); frequencyOffsetChanged = true; } if (channelSettingsKeys.contains("rfBandwidth")) { settings.m_rfBandwidth = response.getBfmDemodSettings()->getRfBandwidth(); } if (channelSettingsKeys.contains("afBandwidth")) { settings.m_afBandwidth = response.getBfmDemodSettings()->getAfBandwidth(); } if (channelSettingsKeys.contains("volume")) { settings.m_volume = response.getBfmDemodSettings()->getVolume(); } if (channelSettingsKeys.contains("squelch")) { settings.m_squelch = response.getBfmDemodSettings()->getSquelch(); } if (channelSettingsKeys.contains("audioStereo")) { settings.m_audioStereo = response.getBfmDemodSettings()->getAudioStereo() != 0; } if (channelSettingsKeys.contains("lsbStereo")) { settings.m_lsbStereo = response.getBfmDemodSettings()->getLsbStereo() != 0; } if (channelSettingsKeys.contains("showPilot")) { settings.m_showPilot = response.getBfmDemodSettings()->getShowPilot() != 0; } if (channelSettingsKeys.contains("rdsActive")) { settings.m_rdsActive = response.getBfmDemodSettings()->getRdsActive() != 0; } if (channelSettingsKeys.contains("rgbColor")) { settings.m_rgbColor = response.getAmDemodSettings()->getRgbColor(); } if (channelSettingsKeys.contains("title")) { settings.m_title = *response.getAmDemodSettings()->getTitle(); } if (channelSettingsKeys.contains("audioDeviceName")) { settings.m_audioDeviceName = *response.getAmDemodSettings()->getAudioDeviceName(); } if (frequencyOffsetChanged) { MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create( m_audioSampleRate, settings.m_inputFrequencyOffset); m_inputMessageQueue.push(channelConfigMsg); } MsgConfigureBFMDemod *msg = MsgConfigureBFMDemod::create(settings, force); m_inputMessageQueue.push(msg); qDebug("BFMDemod::webapiSettingsPutPatch: forward to GUI: %p", m_guiMessageQueue); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureBFMDemod *msgToGUI = MsgConfigureBFMDemod::create(settings, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatChannelSettings(response, settings); return 200; } int BFMDemod::webapiReportGet( SWGSDRangel::SWGChannelReport& response, QString& errorMessage __attribute__((unused))) { response.setBfmDemodReport(new SWGSDRangel::SWGBFMDemodReport()); response.getBfmDemodReport()->init(); webapiFormatChannelReport(response); return 200; } void BFMDemod::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const BFMDemodSettings& settings) { response.getBfmDemodSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset); response.getBfmDemodSettings()->setRfBandwidth(settings.m_rfBandwidth); response.getBfmDemodSettings()->setAfBandwidth(settings.m_afBandwidth); response.getBfmDemodSettings()->setVolume(settings.m_volume); response.getBfmDemodSettings()->setSquelch(settings.m_squelch); response.getBfmDemodSettings()->setAudioStereo(settings.m_audioStereo ? 1 : 0); response.getBfmDemodSettings()->setLsbStereo(settings.m_lsbStereo ? 1 : 0); response.getBfmDemodSettings()->setShowPilot(settings.m_showPilot ? 1 : 0); response.getBfmDemodSettings()->setRdsActive(settings.m_rdsActive ? 1 : 0); response.getBfmDemodSettings()->setRgbColor(settings.m_rgbColor); if (response.getBfmDemodSettings()->getTitle()) { *response.getBfmDemodSettings()->getTitle() = settings.m_title; } else { response.getBfmDemodSettings()->setTitle(new QString(settings.m_title)); } if (response.getBfmDemodSettings()->getAudioDeviceName()) { *response.getBfmDemodSettings()->getAudioDeviceName() = settings.m_audioDeviceName; } else { response.getBfmDemodSettings()->setAudioDeviceName(new QString(settings.m_audioDeviceName)); } } void BFMDemod::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response) { double magsqAvg, magsqPeak; int nbMagsqSamples; getMagSqLevels(magsqAvg, magsqPeak, nbMagsqSamples); response.getBfmDemodReport()->setChannelPowerDb(CalcDb::dbPower(magsqAvg)); response.getBfmDemodReport()->setSquelch(m_squelchState > 0 ? 1 : 0); response.getBfmDemodReport()->setAudioSampleRate(m_audioSampleRate); response.getBfmDemodReport()->setChannelSampleRate(m_inputSampleRate); response.getBfmDemodReport()->setPilotLocked(getPilotLock() ? 1 : 0); response.getBfmDemodReport()->setPilotPowerDb(CalcDb::dbPower(getPilotLevel())); if (m_settings.m_rdsActive) { response.getBfmDemodReport()->setRdsReport(new SWGSDRangel::SWGRDSReport()); webapiFormatRDSReport(response.getBfmDemodReport()->getRdsReport()); } } void BFMDemod::webapiFormatRDSReport(SWGSDRangel::SWGRDSReport *report) { report->setDemodStatus(round(getDemodQua())); report->setDecodStatus(round(getDecoderQua())); report->setRdsDemodAccumDb(CalcDb::dbPower(std::fabs(getDemodAcc()))); report->setRdsDemodFrequency(getDemodFclk()); report->setPid(new QString(str(boost::format("%04X") % getRDSParser().m_pi_program_identification).c_str())); report->setPiType(new QString(getRDSParser().pty_table[getRDSParser().m_pi_program_type].c_str())); report->setPiCoverage(new QString(getRDSParser().coverage_area_codes[getRDSParser().m_pi_area_coverage_index].c_str())); report->setProgServiceName(new QString(getRDSParser().m_g0_program_service_name)); report->setMusicSpeech(new QString((getRDSParser().m_g0_music_speech ? "Music" : "Speech"))); report->setMonoStereo(new QString((getRDSParser().m_g0_mono_stereo ? "Mono" : "Stereo"))); report->setRadioText(new QString(getRDSParser().m_g2_radiotext)); std::string time = str(boost::format("%4i-%02i-%02i %02i:%02i (%+.1fh)")\ % (1900 + getRDSParser().m_g4_year) % getRDSParser().m_g4_month % getRDSParser().m_g4_day % getRDSParser().m_g4_hours % getRDSParser().m_g4_minutes % getRDSParser().m_g4_local_time_offset); report->setTime(new QString(time.c_str())); report->setAltFrequencies(new QList); for (std::set::iterator it = getRDSParser().m_g0_alt_freq.begin(); it != getRDSParser().m_g0_alt_freq.end(); ++it) { if (*it > 76.0) { report->getAltFrequencies()->append(new SWGSDRangel::SWGRDSReport_altFrequencies); report->getAltFrequencies()->back()->setFrequency(*it); } } }