/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "dsp/samplemofifo.h" #include "xtrxmothread.h" XTRXMOThread::XTRXMOThread(struct xtrx_dev *dev, QObject* parent) : QThread(parent), m_running(false), m_dev(dev), m_sampleFifo(nullptr) { qDebug("XTRXMOThread::XTRXMOThread"); m_buf = new qint16[2*DeviceXTRX::blockSize*2]; std::fill(m_buf, m_buf + 2*DeviceXTRX::blockSize*2, 0); } XTRXMOThread::~XTRXMOThread() { qDebug("XTRXMOThread::~XTRXMOThread"); if (m_running) { stopWork(); } delete[] m_buf; } void XTRXMOThread::startWork() { m_startWaitMutex.lock(); start(); while(!m_running) { m_startWaiter.wait(&m_startWaitMutex, 100); } m_startWaitMutex.unlock(); } void XTRXMOThread::stopWork() { m_running = false; wait(); } void XTRXMOThread::setLog2Interpolation(unsigned int log2Interp) { qDebug("XTRXMOThread::setLog2Interpolation: %u", log2Interp); m_log2Interp = log2Interp; } unsigned int XTRXMOThread::getLog2Interpolation() const { return m_log2Interp; } void XTRXMOThread::run() { int res; m_running = true; m_startWaiter.wakeAll(); xtrx_run_params params; xtrx_run_params_init(¶ms); params.dir = XTRX_TX; params.tx_repeat_buf = 0; params.tx.paketsize = 2*DeviceXTRX::blockSize; params.tx.chs = XTRX_CH_AB; params.tx.wfmt = XTRX_WF_16; params.tx.hfmt = XTRX_IQ_INT16; params.tx.flags |= XTRX_RSP_SWAP_IQ; res = xtrx_run_ex(m_dev, ¶ms); if (res != 0) { qCritical("XTRXMOThread::run: could not start stream err:%d", res); m_running = false; } else { std::this_thread::sleep_for(std::chrono::milliseconds(50)); qDebug("XTRXMOThread::run: stream started"); } qint16 buf0[2*DeviceXTRX::blockSize]; // I+Q = 2x16 bit samples qint16 buf1[2*DeviceXTRX::blockSize]; std::vector buffs(2); master_ts ts = 4096*1024; buffs[0] = &buf0; buffs[1] = &buf1; xtrx_send_ex_info_t nfo; nfo.samples = DeviceXTRX::blockSize; nfo.buffer_count = 2; nfo.buffers = (void* const*) buffs.data(); nfo.flags = XTRX_TX_DONT_BUFFER; // | XTRX_TX_SEND_ZEROS; nfo.timeout = 0; nfo.out_txlatets = 0; nfo.ts = ts; while (m_running) { callback(buf0, buf1, nfo.samples); res = xtrx_send_sync_ex(m_dev, &nfo); if (res < 0) { qCritical("XTRXMOThread::run send error: %d", res); qDebug("XTRXMOThread::run: out_samples: %u out_flags: %u", nfo.out_samples, nfo.out_flags); break; } if (nfo.out_flags & XTRX_TX_DISCARDED_TO) { qDebug("XTRXMOThread::run: underrun"); } if (nfo.out_txlatets) { qDebug("XTRXMOThread::run: out_txlatets: %lu", nfo.out_txlatets); } nfo.ts += DeviceXTRX::blockSize; } res = xtrx_stop(m_dev, XTRX_TX); if (res != 0) { qCritical("XTRXMOThread::run: could not stop stream"); } else { std::this_thread::sleep_for(std::chrono::milliseconds(50)); qDebug("XTRXMOThread::run: stream stopped"); } m_running = false; } void XTRXMOThread::callback(qint16* buf0, qint16* buf1, qint32 samplesPerChannel) { unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End; m_sampleFifo->readSync(samplesPerChannel/(1< decim=16). len is a number of samples (not a number of I or Q) void XTRXMOThread::callbackPart(qint16* buf0, qint16* buf1, qint32 nSamples, int iBegin) { for (unsigned int channel = 0; channel < 2; channel++) { SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin; if (m_log2Interp == 0) { m_interpolators[channel].interpolate1( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); } else { switch (m_log2Interp) { case 1: m_interpolators[channel].interpolate2_cen( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); break; case 2: m_interpolators[channel].interpolate4_cen( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); break; case 3: m_interpolators[channel].interpolate8_cen( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); break; case 4: m_interpolators[channel].interpolate16_cen( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); break; case 5: m_interpolators[channel].interpolate32_cen( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); break; case 6: m_interpolators[channel].interpolate64_cen( &begin, channel == 0 ? buf0 : buf1, 2*nSamples); break; default: break; } } } }