/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019-2022 Edouard Griffiths, F4EXB // // Copyright (C) 2022 Jiří Pinkava // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/datafifo.h" #include "dsp/cwkeyer.h" #include "util/messagequeue.h" #include "maincore.h" #include "ammodsource.h" const int AMModSource::m_levelNbSamples = 480; // every 10ms AMModSource::AMModSource() : m_audioFifo(12000), m_feedbackAudioFifo(48000) { m_audioFifo.setLabel("AMModSource.m_audioFifo"); m_feedbackAudioFifo.setLabel("AMModSource.m_feedbackAudioFifo"); m_audioBuffer.resize(24000); m_audioBufferFill = 0; m_audioReadBuffer.resize(24000); m_audioReadBufferFill = 0; m_feedbackAudioBuffer.resize(1<<14); m_feedbackAudioBufferFill = 0; m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_demodBufferEnabled = false; m_magsq = 0.0; applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } AMModSource::~AMModSource() = default; void AMModSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void AMModSource::pullOne(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; return; } Complex ci; if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (SDR_TX_SCALED*SDR_TX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); m_demodBuffer[m_demodBufferFill] = (qint16) (ci.real() + ci.imag()); ++m_demodBufferFill; if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (!dataPipes.empty()) { for (auto& dataPipe : dataPipes) { DataFifo *fifo = qobject_cast(dataPipe->m_element); if (fifo) { fifo->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16); } } } m_demodBufferFill = 0; } } void AMModSource::prefetch(unsigned int nbSamples) { auto nbSamplesAudio = (nbSamples * (unsigned int) ((Real) m_audioSampleRate / (Real) m_channelSampleRate)); pullAudio(nbSamplesAudio); } void AMModSource::pullAudio(unsigned int nbSamples) { QMutexLocker mlock(&m_mutex); if (nbSamples > m_audioBuffer.size()) { m_audioBuffer.resize(nbSamples); } std::copy(&m_audioReadBuffer[0], &m_audioReadBuffer[nbSamples], &m_audioBuffer[0]); m_audioBufferFill = 0; if (m_audioReadBufferFill > nbSamples) // copy back remaining samples at the start of the read buffer { std::copy(&m_audioReadBuffer[nbSamples], &m_audioReadBuffer[m_audioReadBufferFill], &m_audioReadBuffer[0]); m_audioReadBufferFill = m_audioReadBufferFill - nbSamples; // adjust current read buffer fill pointer } } void AMModSource::modulateSample() { Real t = 0.0f; pullAF(t); if (m_settings.m_feedbackAudioEnable) { pushFeedback(t * m_settings.m_feedbackVolumeFactor * 16384.0f); } calculateLevel(t); m_audioBufferFill++; m_modSample.real((t*m_settings.m_modFactor + 1.0f) * 16384.0f); // modulate and scale zero frequency carrier m_modSample.imag(0.0f); } void AMModSource::pullAF(Real& sample) { switch (m_settings.m_modAFInput) { case AMModSettings::AMModInputTone: sample = m_toneNco.next(); break; case AMModSettings::AMModInputFile: if (m_ifstream && m_ifstream->is_open()) { if ((m_ifstream->eof()) && (m_settings.m_playLoop)) { m_ifstream->clear(); m_ifstream->seekg(0, std::ios::beg); } if (m_ifstream->eof()) { sample = 0.0f; } else { m_ifstream->read(reinterpret_cast(&sample), sizeof(Real)); sample *= m_settings.m_volumeFactor; } } else { sample = 0.0f; } break; case AMModSettings::AMModInputAudio: sample = ((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r) / 65536.0f) * m_settings.m_volumeFactor; break; case AMModSettings::AMModInputCWTone: Real fadeFactor; if (!m_cwKeyer) { break; } if (m_cwKeyer->getSample()) { m_cwKeyer->getCWSmoother().getFadeSample(true, fadeFactor); sample = m_toneNco.next() * fadeFactor; } else { if (m_cwKeyer->getCWSmoother().getFadeSample(false, fadeFactor)) { sample = m_toneNco.next() * fadeFactor; } else { sample = 0.0f; m_toneNco.setPhase(0); } } break; default: sample = 0.0f; break; } } void AMModSource::pushFeedback(Real sample) { Complex c(sample, sample); Complex ci; if (m_feedbackInterpolatorDistance < 1.0f) // interpolate { while (!m_feedbackInterpolator.interpolate(&m_feedbackInterpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance; } } else // decimate { if (m_feedbackInterpolator.decimate(&m_feedbackInterpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance; } } } void AMModSource::processOneSample(const Complex& ci) { m_feedbackAudioBuffer[m_feedbackAudioBufferFill].l = (qint16) ci.real(); m_feedbackAudioBuffer[m_feedbackAudioBufferFill].r = (qint16) ci.imag(); ++m_feedbackAudioBufferFill; if (m_feedbackAudioBufferFill >= m_feedbackAudioBuffer.size()) { uint res = m_feedbackAudioFifo.write((const quint8*)&m_feedbackAudioBuffer[0], m_feedbackAudioBufferFill); if (res != m_feedbackAudioBufferFill) { qDebug("AMModChannelSource::pushFeedback: %u/%u audio samples written m_feedbackInterpolatorDistance: %f", res, m_feedbackAudioBufferFill, m_feedbackInterpolatorDistance); m_feedbackAudioFifo.clear(); } m_feedbackAudioBufferFill = 0; } } void AMModSource::calculateLevel(const Real& sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples); m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void AMModSource::applyAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("AMModSource::applyAudioSampleRate: invalid sample rate %d", sampleRate); return; } qDebug("AMModSource::applyAudioSampleRate: %d", sampleRate); m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) sampleRate / (Real) m_channelSampleRate; m_interpolator.create(48, sampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); m_toneNco.setFreq(m_settings.m_toneFrequency, (float) sampleRate); if (m_cwKeyer) { m_cwKeyer->setSampleRate(sampleRate); m_cwKeyer->reset(); } QList pipes; MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes); if (!pipes.empty()) { for (const auto& pipe : pipes) { MessageQueue* messageQueue = qobject_cast(pipe->m_element); MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate); messageQueue->push(msg); } } m_audioSampleRate = sampleRate; applyFeedbackAudioSampleRate(m_feedbackAudioSampleRate); } void AMModSource::applyFeedbackAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("AMModSource::applyFeedbackAudioSampleRate: invalid sample rate %d", sampleRate); return; } qDebug("AMModSource::applyFeedbackAudioSampleRate: %u", sampleRate); m_feedbackInterpolatorDistanceRemain = 0; m_feedbackInterpolatorDistance = (Real) sampleRate / (Real) m_audioSampleRate; Real cutoff = ((float) std::min(sampleRate, m_audioSampleRate)) / 2.2f; m_feedbackInterpolator.create(48, sampleRate, cutoff, 3.0); m_feedbackAudioSampleRate = sampleRate; } void AMModSource::applySettings(const AMModSettings& settings, bool force) { if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_settings.m_rfBandwidth = settings.m_rfBandwidth; applyAudioSampleRate(m_audioSampleRate); } if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force) { m_toneNco.setFreq(settings.m_toneFrequency, (float) m_audioSampleRate); } if ((settings.m_modAFInput != m_settings.m_modAFInput) || force) { if (settings.m_modAFInput == AMModSettings::AMModInputAudio) { connect(&m_audioFifo, SIGNAL(dataReady()), this, SLOT(handleAudio())); } else { disconnect(&m_audioFifo, SIGNAL(dataReady()), this, SLOT(handleAudio())); } } m_settings = settings; } void AMModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "AMModSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq((float) channelFrequencyOffset, (float) channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorConsumed = false; m_interpolatorDistance = (Real) m_audioSampleRate / (Real) channelSampleRate; m_interpolator.create(48, m_audioSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void AMModSource::handleAudio() { unsigned int nbRead; while ((nbRead = m_audioFifo.read(reinterpret_cast(&m_audioReadBuffer[m_audioReadBufferFill]), 4096)) != 0) { if (m_audioReadBufferFill + nbRead + 4096 < m_audioReadBuffer.size()) { m_audioReadBufferFill += nbRead; } } }