/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 F4EXB // // written by Edouard Griffiths // // // // Integer half-band FIR based interpolator and decimator // // This is the double buffer variant // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_INTHALFBANDFILTER_DB_H #define INCLUDE_INTHALFBANDFILTER_DB_H #include #include "dsp/dsptypes.h" #include "dsp/hbfiltertraits.h" #include "util/export.h" template class SDRANGEL_API IntHalfbandFilterDB { public: IntHalfbandFilterDB(); // downsample by 2, return center part of original spectrum bool workDecimateCenter(Sample* sample) { // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, return center part of original spectrum - double buffer variant bool workInterpolateCenterZeroStuffing(Sample* sampleIn, Sample *SampleOut) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(SampleOut); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(SampleOut); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } /** Optimized upsampler by 2 not calculating FIR with inserted null samples */ bool workInterpolateCenter(Sample* sampleIn, Sample *SampleOut) { switch(m_state) { case 0: // return the middle peak SampleOut->setReal(m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][0]); SampleOut->setImag(m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][1]); m_state = 1; // next state return false; // tell caller we didn't consume the sample default: // calculate with non null samples doInterpolateFIR(SampleOut); // insert sample into ring double buffer m_samplesDB[m_ptr][0] = sampleIn->real(); m_samplesDB[m_ptr][1] = sampleIn->imag(); m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][0] = sampleIn->real(); m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][1] = sampleIn->imag(); // advance pointer if (m_ptr < (HBFIRFilterTraits::hbOrder/2) - 1) { m_ptr++; } else { m_ptr = 0; } m_state = 0; // next state return true; // tell caller we consumed the sample } } bool workDecimateCenter(qint32 *x, qint32 *y) { // insert sample into ring-buffer storeSample(*x, *y); switch(m_state) { case 0: // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; default: // save result doFIR(x, y); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // downsample by 2, return lower half of original spectrum bool workDecimateLowerHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample((FixReal) -sample->imag(), (FixReal) sample->real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) -sample->real(), (FixReal) -sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer storeSample((FixReal) sample->imag(), (FixReal) -sample->real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, from lower half of original spectrum - double buffer variant bool workInterpolateLowerHalf(Sample* sampleIn, Sample *sampleOut) { Sample s; switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(s.imag()); sampleOut->setImag(-s.real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(-s.real()); sampleOut->setImag(-s.imag()); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we consumed the sample return true; case 2: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(-s.imag()); sampleOut->setImag(s.real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(s.real()); sampleOut->setImag(s.imag()); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } // downsample by 2, return upper half of original spectrum bool workDecimateUpperHalf(Sample* sample) { switch(m_state) { case 0: // insert sample into ring-buffer storeSample((FixReal) sample->imag(), (FixReal) -sample->real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we don't have a new sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) -sample->real(), (FixReal) -sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we have a new sample return true; case 2: // insert sample into ring-buffer storeSample((FixReal) -sample->imag(), (FixReal) sample->real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we don't have a new sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sample->real(), (FixReal) sample->imag()); // save result doFIR(sample); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we have a new sample return true; } } // upsample by 2, move original spectrum to upper half - double buffer variant bool workInterpolateUpperHalf(Sample* sampleIn, Sample *sampleOut) { Sample s; switch(m_state) { case 0: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(-s.imag()); sampleOut->setImag(s.real()); // advance write-pointer advancePointer(); // next state m_state = 1; // tell caller we didn't consume the sample return false; case 1: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(-s.real()); sampleOut->setImag(-s.imag()); // advance write-pointer advancePointer(); // next state m_state = 2; // tell caller we consumed the sample return true; case 2: // insert sample into ring-buffer storeSample(0, 0); // save result doFIR(&s); sampleOut->setReal(s.imag()); sampleOut->setImag(-s.real()); // advance write-pointer advancePointer(); // next state m_state = 3; // tell caller we didn't consume the sample return false; default: // insert sample into ring-buffer storeSample((FixReal) sampleIn->real(), (FixReal) sampleIn->imag()); // save result doFIR(&s); sampleOut->setReal(s.real()); sampleOut->setImag(s.imag()); // advance write-pointer advancePointer(); // next state m_state = 0; // tell caller we consumed the sample return true; } } void myDecimate(const Sample* sample1, Sample* sample2) { storeSample((FixReal) sample1->real(), (FixReal) sample1->imag()); advancePointer(); storeSample((FixReal) sample2->real(), (FixReal) sample2->imag()); doFIR(sample2); advancePointer(); } void myDecimate(qint32 x1, qint32 y1, qint32 *x2, qint32 *y2) { storeSample(x1, y1); advancePointer(); storeSample(*x2, *y2); doFIR(x2, y2); advancePointer(); } /** Simple zero stuffing and filter */ void myInterpolateZeroStuffing(Sample* sample1, Sample* sample2) { storeSample((FixReal) sample1->real(), (FixReal) sample1->imag()); doFIR(sample1); advancePointer(); storeSample(0, 0); doFIR(sample2); advancePointer(); } /** Simple zero stuffing and filter */ void myInterpolateZeroStuffing(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2) { storeSample(*x1, *y1); doFIR(x1, y1); advancePointer(); storeSample(0, 0); doFIR(x2, y2); advancePointer(); } /** Optimized upsampler by 2 not calculating FIR with inserted null samples */ void myInterpolate(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2) { // insert sample into ring double buffer m_samplesDB[m_ptr][0] = *x1; m_samplesDB[m_ptr][1] = *y1; m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][0] = *x1; m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][1] = *y1; // advance pointer if (m_ptr < (HBFIRFilterTraits::hbOrder/2) - 1) { m_ptr++; } else { m_ptr = 0; } // first output sample calculated with the middle peak *x1 = m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][0]; *y1 = m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][1]; // second sample calculated with the filter doInterpolateFIR(x2, y2); } protected: qint32 m_samplesDB[2*(HBFIRFilterTraits::hbOrder - 1)][2]; // double buffer technique int m_ptr; int m_size; int m_state; void storeSample(const FixReal& sampleI, const FixReal& sampleQ) { m_samplesDB[m_ptr][0] = sampleI; m_samplesDB[m_ptr][1] = sampleQ; m_samplesDB[m_ptr + m_size][0] = sampleI; m_samplesDB[m_ptr + m_size][1] = sampleQ; } void storeSample(qint32 x, qint32 y) { m_samplesDB[m_ptr][0] = x; m_samplesDB[m_ptr][1] = y; m_samplesDB[m_ptr + m_size][0] = x; m_samplesDB[m_ptr + m_size][1] = y; } void advancePointer() { m_ptr = m_ptr + 1 < m_size ? m_ptr + 1: 0; } void doFIR(Sample* sample) { int a = m_ptr + m_size; // tip pointer int b = m_ptr + 1; // tail pointer qint32 iAcc = 0; qint32 qAcc = 0; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffs[i]; a -= 2; b += 2; } iAcc += ((qint32)m_samplesDB[b-1][0]) << (HBFIRFilterTraits::hbShift - 1); qAcc += ((qint32)m_samplesDB[b-1][1]) << (HBFIRFilterTraits::hbShift - 1); sample->setReal(iAcc >> (HBFIRFilterTraits::hbShift -1)); sample->setImag(qAcc >> (HBFIRFilterTraits::hbShift -1)); } void doFIR(qint32 *x, qint32 *y) { int a = m_ptr + m_size; // tip pointer int b = m_ptr + 1; // tail pointer qint32 iAcc = 0; qint32 qAcc = 0; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffs[i]; a -= 2; b += 2; } iAcc += ((qint32)m_samplesDB[b-1][0]) << (HBFIRFilterTraits::hbShift - 1); qAcc += ((qint32)m_samplesDB[b-1][1]) << (HBFIRFilterTraits::hbShift - 1); *x = iAcc >> (HBFIRFilterTraits::hbShift -1); // HB_SHIFT incorrect do not loose the gained bit *y = qAcc >> (HBFIRFilterTraits::hbShift -1); } void doInterpolateFIR(Sample* sample) { qint16 a = m_ptr; qint16 b = m_ptr + (HBFIRFilterTraits::hbOrder / 2) - 1; // go through samples in buffer qint32 iAcc = 0; qint32 qAcc = 0; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffs[i]; a++; b--; } sample->setReal(iAcc >> (HBFIRFilterTraits::hbShift -1)); sample->setImag(qAcc >> (HBFIRFilterTraits::hbShift -1)); } void doInterpolateFIR(qint32 *x, qint32 *y) { qint16 a = m_ptr; qint16 b = m_ptr + (HBFIRFilterTraits::hbOrder / 2) - 1; // go through samples in buffer qint32 iAcc = 0; qint32 qAcc = 0; for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++) { iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffs[i]; qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffs[i]; a++; b--; } *x = iAcc >> (HBFIRFilterTraits::hbShift -1); *y = qAcc >> (HBFIRFilterTraits::hbShift -1); } }; template IntHalfbandFilterDB::IntHalfbandFilterDB() { m_size = HBFIRFilterTraits::hbOrder - 1; for (int i = 0; i < m_size; i++) { m_samplesDB[i][0] = 0; m_samplesDB[i][1] = 0; } m_ptr = 0; m_state = 0; } #endif // INCLUDE_INTHALFBANDFILTER_DB_H