/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_ATVDEMODSINK_H #define INCLUDE_ATVDEMODSINK_H #include #include #include "dsp/channelsamplesink.h" #include "dsp/basebandsamplesink.h" #include "dsp/nco.h" #include "dsp/interpolator.h" #include "dsp/fftfilt.h" #include "dsp/agc.h" #include "dsp/phaselock.h" #include "dsp/recursivefilters.h" #include "dsp/phasediscri.h" #include "audio/audiofifo.h" #include "util/movingaverage.h" #include "gui/tvscreen.h" #include "atvdemodsettings.h" class ATVDemodSink : public ChannelSampleSink { public: ATVDemodSink(); ~ATVDemodSink(); virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end); void setScopeSink(BasebandSampleSink* scopeSink) { m_scopeSink = scopeSink; } void setTVScreen(TVScreen *tvScreen) { m_registeredTVScreen = tvScreen; } //!< set by the GUI double getMagSq() const { return m_magSqAverage; } //!< Beware this is scaled to 2^30 bool getBFOLocked(); void setVideoTabIndex(int videoTabIndex) { m_videoTabIndex = videoTabIndex; } void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = false); void applySettings(const ATVDemodSettings& settings, bool force = false); private: struct ATVConfigPrivate { int m_intTVSampleRate; int m_intNumberSamplePerLine; ATVConfigPrivate() : m_intTVSampleRate(0), m_intNumberSamplePerLine(0) {} }; /** * Exponential average using integers and alpha as the inverse of a power of two */ class AvgExpInt { public: AvgExpInt(int log2Alpha) : m_log2Alpha(log2Alpha), m_m1(0), m_start(true) {} void reset() { m_start = true; } int run(int m0) { if (m_start) { m_m1 = m0; m_start = false; return m0; } else { m_m1 = m0 + m_m1 - (m_m1>>m_log2Alpha); return m_m1>>m_log2Alpha; } } private: int m_log2Alpha; int m_m1; bool m_start; }; int m_channelSampleRate; int m_channelFrequencyOffset; int m_tvSampleRate; unsigned int m_samplesPerLineNom; //!< number of samples per complete line (includes sync signals) - nominal value unsigned int m_samplesPerLine; //!< number of samples per complete line (includes sync signals) - adusted value ATVDemodSettings m_settings; int m_videoTabIndex; //*************** SCOPE *************** BasebandSampleSink* m_scopeSink; SampleVector m_scopeSampleBuffer; //*************** ATV PARAMETERS *************** TVScreen *m_registeredTVScreen; //int m_intNumberSamplePerLine; int m_numberSamplesPerHTopNom; //!< number of samples per horizontal synchronization pulse (pulse in ultra-black) - nominal value int m_numberSamplesPerHTop; //!< number of samples per horizontal synchronization pulse (pulse in ultra-black) - adusted value int m_numberOfSyncLines; //!< this is the number of non displayable lines at the start of a frame. First displayable row comes next. int m_numberOfBlackLines; //!< this is the total number of lines not part of the image and is used for vertical screen size int m_numberOfEqLines; //!< number of equalizing lines both whole and partial int m_numberSamplesPerLineSignals; //!< number of samples in the non image part of the line (signals = front porch + pulse + back porch) int m_numberSamplesPerHSync; //!< number of samples per horizontal synchronization pattern (pulse + back porch) int m_numberSamplesHSyncCrop; //!< number of samples to crop from start of horizontal synchronization bool m_interleaved; //!< interleaved image int m_firstRowIndexEven; //!< index of the first row of an even image int m_firstRowIndexOdd; //!< index of the first row of an even image //*************** PROCESSING *************** int m_imageIndex; int m_synchroSamples; bool m_verticalSynchroDetected; float m_ampLineSum; float m_ampLineAvg; float m_effMin; float m_effMax; float m_ampMin; float m_ampMax; float m_ampDelta; //!< calculated amplitude of HSync pulse (should be ~0.3f) float m_fltBufferI[6]; float m_fltBufferQ[6]; int m_colIndex; int m_sampleIndex; int m_amSampleIndex; int m_rowIndex; int m_lineIndex; AvgExpInt m_objAvgColIndex; int m_avgColIndex; SampleVector m_sampleBuffer; //*************** RF *************** MovingAverageUtil m_magSqAverage; MovingAverageUtilVar m_ampAverage; NCO m_nco; SimplePhaseLock m_bfoPLL; SecondOrderRecursiveFilter m_bfoFilter; // Interpolator group for decimation and/or double sideband RF filtering Interpolator m_interpolator; Real m_interpolatorDistance; Real m_interpolatorDistanceRemain; // Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme) fftfilt* m_DSBFilter; Complex* m_DSBFilterBuffer; int m_DSBFilterBufferIndex; static const int m_ssbFftLen; // Used for FM PhaseDiscriminators m_objPhaseDiscri; //QElapsedTimer m_objTimer; void demod(Complex& c); void applyStandard(int sampleRate, const ATVDemodSettings& settings, float lineDuration); // Vertical sync is obtained by skipping horizontal sync on the line that triggers vertical sync (new frame) inline void processHSkip(float& sample, int& sampleVideo) { // Fill pixel on the current line - column index 0 is reference at start of sync remove only sync length empirically m_registeredTVScreen->setDataColor(m_colIndex - m_numberSamplesHSyncCrop, sampleVideo, sampleVideo, sampleVideo); // Horizontal Synchro detection // Floor Detection (0.1 nominal) if (sample < m_settings.m_levelSynchroTop) { m_synchroSamples++; } // Black detection (0.3 nominal) else if (sample > m_settings.m_levelBlack) { m_synchroSamples = 0; } // H sync pulse if (m_synchroSamples == m_numberSamplesPerHTop) // horizontal synchro detected { // Vertical sync and image rendering if ((m_sampleIndex >= (3*m_samplesPerLine) / 2) // Vertical sync is first horizontal sync after skip (count at least 1.5 line length) || (!m_settings.m_vSync && (m_lineIndex >= m_settings.m_nbLines))) // Vsync ignored and reached nominal number of lines per frame { // qDebug("ATVDemodSink::processHSkip: %sVSync: co: %d sa: %d li: %d", // (m_settings.m_vSync ? "" : "no "), m_colIndex, m_sampleIndex, m_lineIndex); m_avgColIndex = m_colIndex; m_registeredTVScreen->renderImage(0); m_imageIndex++; m_lineIndex = 0; m_rowIndex = 0; m_registeredTVScreen->selectRow(m_rowIndex); } m_sampleIndex = 0; // reset after H sync } else { m_sampleIndex++; } if (m_colIndex < m_samplesPerLine + m_numberSamplesPerHTop - 1) // increment until full line + next horizontal pulse { m_colIndex++; } else // full line + next horizontal pulse => start of screen reference line { // set column index to start a new line if (m_settings.m_hSync && (m_lineIndex == 0)) { // start of a new frame - readjust sync position m_colIndex = m_numberSamplesPerHTop + (m_samplesPerLine - m_avgColIndex) / 2; // amortizing factor 1/2 } else { // reset column index at end of sync pulse normally m_colIndex = m_numberSamplesPerHTop; } m_lineIndex++; // new line m_rowIndex++; // new row if (m_rowIndex < m_settings.m_nbLines) { m_registeredTVScreen->selectRow(m_rowIndex); } } } // Vertical sync is obtained when the average level of signal on a line is below a certain threshold. This is obtained by lowering signal to ultra black during at least 3/4th of the line // We use directly the sum of line sample values inline void processClassic(float& sample, int& sampleVideo) { // Filling pixel on the current line - reference index 0 at start of sync pulse // remove only sync pulse empirically, +4 is to compensate shift due to hsync amortizing factor of 1/4 m_registeredTVScreen->setDataColor(m_colIndex - m_numberSamplesPerHSync + m_numberSamplesPerHTop, sampleVideo, sampleVideo, sampleVideo); int synchroTimeSamples = (3 * m_samplesPerLine) / 4; // count 3/4 line globally float synchroTrameLevel = 0.5f * ((float) synchroTimeSamples) * m_settings.m_levelBlack; // threshold is half the black value over 3/4th of line samples // Horizontal Synchro detection // Floor Detection 0 if (sample < m_settings.m_levelSynchroTop) { m_synchroSamples++; } // Black detection 0.3 else if (sample > m_settings.m_levelBlack) { m_synchroSamples = 0; } //Horizontal Synchro processing if ((m_synchroSamples == m_numberSamplesPerHTop) // horizontal synchro detected && (m_sampleIndex > (m_samplesPerLine/2) + m_numberSamplesPerLineSignals)) { m_avgColIndex = m_sampleIndex - m_colIndex; //qDebug("HSync: %d %d %d", m_sampleIndex, m_colIndex, m_avgColIndex); m_sampleIndex = 0; } else { m_sampleIndex++; } if (m_colIndex < m_samplesPerLine + m_numberSamplesPerHTop - 1) // increment until full line + next horizontal pulse { m_colIndex++; if (m_colIndex < (m_samplesPerLine/2)) { // count on first half of line for better separation between black and ultra black m_ampLineSum += sample; } } else // full line + next horizontal pulse => start of screen reference line { m_ampLineAvg = m_ampLineSum / ((m_samplesPerLine/2) - m_numberSamplesPerHTop); // avg length is half line less horizontal top m_ampLineSum = 0.0f; // set column index to start a new line if (m_settings.m_hSync && (m_lineIndex == 0)) { m_colIndex = m_numberSamplesPerHTop + m_avgColIndex/4; // amortizing 1/4 } else { m_colIndex = m_numberSamplesPerHTop; } // process line m_lineIndex++; // new line m_rowIndex += m_interleaved ? 2 : 1; // new row considering interleaving if (m_rowIndex < m_settings.m_nbLines) { m_registeredTVScreen->selectRow(m_rowIndex - m_numberOfSyncLines); } } // Vertical sync and image rendering if (m_lineIndex > m_numberOfBlackLines) { m_verticalSynchroDetected = false; // reset trigger when detection zone is left } if ((m_settings.m_vSync) && (m_lineIndex <= m_settings.m_nbLines)) // VSync activated and lines in range { if (m_colIndex >= synchroTimeSamples) { if (m_ampLineAvg < 0.15f) // ultra black detection { if (!m_verticalSynchroDetected) // not yet { m_verticalSynchroDetected = true; // prevent repetition // Odd frame or not interleaved if ((m_imageIndex % 2 == 1) || !m_interleaved) { m_registeredTVScreen->renderImage(0); } if (m_lineIndex > m_settings.m_nbLines/2) { // long frame done (even) m_imageIndex = m_firstRowIndexOdd; // next is odd } else { m_imageIndex = m_firstRowIndexEven; // next is even } if (m_interleaved) { m_rowIndex = m_imageIndex; } else { m_rowIndex = 0; // just the first line } // qDebug("ATVDemodSink::processClassic: m_lineIndex: %d m_imageIndex: %d m_rowIndex: %d", // m_lineIndex, m_imageIndex, m_rowIndex); m_registeredTVScreen->selectRow(m_rowIndex - m_numberOfSyncLines); m_lineIndex = 0; m_imageIndex++; } } } } else // no VSync or lines out of range => set new image arbitrarily { if (m_lineIndex >= m_settings.m_nbLines/2) { if (m_lineIndex > m_settings.m_nbLines/2) { // long frame done (even) m_imageIndex = m_firstRowIndexOdd; // next is odd } else { m_imageIndex = m_firstRowIndexEven; // next is even } if (m_interleaved) { m_rowIndex = m_imageIndex; } else { m_rowIndex = 0; // just the first line } m_registeredTVScreen->selectRow(m_rowIndex - m_numberOfSyncLines); m_lineIndex = 0; m_imageIndex++; } } } }; #endif // INCLUDE_ATVDEMODSINK_H