/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // Copyright (C) 2015-2020, 2023 Edouard Griffiths, F4EXB // // Copyright (C) 2023 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "dsp/hbfilterchainconverter.h" #include "downchannelizer.h" DownChannelizer::DownChannelizer(ChannelSampleSink* sampleSink) : m_filterChainSetMode(false), m_sampleSink(sampleSink), m_basebandSampleRate(0), m_requestedOutputSampleRate(0), m_requestedCenterFrequency(0), m_channelSampleRate(0), m_channelFrequencyOffset(0), m_log2Decim(0), m_filterChainHash(0) { } DownChannelizer::~DownChannelizer() { freeFilterChain(); } void DownChannelizer::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { if (m_sampleSink == 0) { m_sampleBuffer.clear(); return; } if (m_filterStages.size() == 0) // optimization when no downsampling is done anyway { m_sampleSink->feed(begin, end); } else { for (SampleVector::const_iterator sample = begin; sample != end; ++sample) { Sample s(*sample); FilterStages::iterator stage = m_filterStages.begin(); for (; stage != m_filterStages.end(); ++stage) { #ifndef SDR_RX_SAMPLE_24BIT s.m_real /= 2; // avoid saturation on 16 bit samples s.m_imag /= 2; #endif if (!(*stage)->work(&s)) { break; } } if(stage == m_filterStages.end()) { #ifdef SDR_RX_SAMPLE_24BIT s.m_real /= (1<<(m_filterStages.size())); // on 32 bit samples there is enough headroom to just divide the final result s.m_imag /= (1<<(m_filterStages.size())); #endif m_sampleBuffer.push_back(s); } } m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end()); m_sampleBuffer.clear(); } } void DownChannelizer::setChannelization(int requestedSampleRate, qint64 requestedCenterFrequency) { if (requestedSampleRate < 0) { qWarning("DownChannelizer::setChannelization: wrong sample rate requested: %d", requestedSampleRate); return; } m_requestedOutputSampleRate = requestedSampleRate; m_requestedCenterFrequency = requestedCenterFrequency; applyChannelization(); } void DownChannelizer::setBasebandSampleRate(int basebandSampleRate, bool decim) { m_basebandSampleRate = basebandSampleRate; if (decim) { applyDecimation(); } else { applyChannelization(); } } void DownChannelizer::applyChannelization() { m_filterChainSetMode = false; if (m_basebandSampleRate == 0) { qDebug() << "DownChannelizer::applyChannelization: aborting (in=0)" << " in (baseband):" << m_basebandSampleRate << " req:" << m_requestedOutputSampleRate << " out (channel):" << m_channelSampleRate << " fc:" << m_channelFrequencyOffset; return; } freeFilterChain(); m_channelFrequencyOffset = createFilterChain( m_basebandSampleRate / -2, m_basebandSampleRate / 2, m_requestedCenterFrequency - m_requestedOutputSampleRate / 2, m_requestedCenterFrequency + m_requestedOutputSampleRate / 2); m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size()); qDebug() << "DownChannelizer::applyChannelization done:" << " nb stages:" << m_filterStages.size() << " in (baseband):" << m_basebandSampleRate << " req:" << m_requestedOutputSampleRate << " out (channel):" << m_channelSampleRate << " fc:" << m_channelFrequencyOffset; } void DownChannelizer::setDecimation(unsigned int log2Decim, unsigned int filterChainHash) { m_log2Decim = log2Decim; m_filterChainHash = filterChainHash; applyDecimation(); } void DownChannelizer::applyDecimation() { m_filterChainSetMode = true; std::vector stageIndexes; m_channelFrequencyOffset = m_basebandSampleRate * HBFilterChainConverter::convertToIndexes(m_log2Decim, m_filterChainHash, stageIndexes); m_requestedCenterFrequency = m_channelFrequencyOffset; freeFilterChain(); m_channelFrequencyOffset = m_basebandSampleRate * setFilterChain(stageIndexes); m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size()); m_requestedOutputSampleRate = m_channelSampleRate; qDebug() << "DownChannelizer::applyDecimation:" << " m_log2Decim:" << m_log2Decim << " m_filterChainHash:" << m_filterChainHash << " out:" << m_basebandSampleRate << " in:" << m_channelSampleRate << " fc:" << m_channelFrequencyOffset; } #ifdef SDR_RX_SAMPLE_24BIT DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO), m_workFunction(0), m_mode(mode), m_sse(true) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateUpperHalf; break; } } #else DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO), m_workFunction(0), m_mode(mode), m_sse(true) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateUpperHalf; break; } } #endif DownChannelizer::FilterStage::~FilterStage() { delete m_filter; } Real DownChannelizer::channelMinSpace(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real leftSpace = chanStart - sigStart; Real rightSpace = sigEnd - chanEnd; return std::min(leftSpace, rightSpace); } Real DownChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real chanBw = chanEnd - chanStart; Real rot = sigBw / 4; std::array filterMinSpaces; // Array of left, center and right filter min spaces respectively filterMinSpaces[0] = channelMinSpace(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); filterMinSpaces[1] = channelMinSpace(sigStart + rot, sigEnd - rot, chanStart, chanEnd); filterMinSpaces[2] = channelMinSpace(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); auto maxIt = std::max_element(filterMinSpaces.begin(), filterMinSpaces.end()); int maxIndex = maxIt - filterMinSpaces.begin(); Real maxValue = *maxIt; qDebug("DownChannelizer::createFilterChain: Signal [%.1f, %.1f] (BW %.1f) Channel [%.1f, %.1f] (BW %.1f) Selected: %d (fit %.1f)", sigStart, sigEnd, sigBw, chanStart, chanEnd, chanBw, maxIndex, maxValue); if ((sigStart < sigEnd) && (chanStart < chanEnd) && (maxValue >= chanBw/8.0)) { if (maxIndex == 0) { m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } if (maxIndex == 1) { m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd); } if (maxIndex == 2) { m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } } Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); qDebug("DownChannelizer::createFilterChain: -> complete (final BW %.1f, frequency offset %.1f)", sigBw, ofs); return ofs; } double DownChannelizer::setFilterChain(const std::vector& stageIndexes) { // filters are described from lower to upper level but the chain is constructed the other way round std::vector::const_reverse_iterator rit = stageIndexes.rbegin(); double ofs = 0.0, ofs_stage = 0.25; // Each index is a base 3 number with 0 = low, 1 = center, 2 = high // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting // algorithms will go from LSD to MSD. This explains the reverse order. for (; rit != stageIndexes.rend(); ++rit) { if (*rit == 0) { m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); ofs -= ofs_stage; qDebug("DownChannelizer::setFilterChain: lower half: ofs: %f", ofs); } else if (*rit == 1) { m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); qDebug("DownChannelizer::setFilterChain: center: ofs: %f", ofs); } else if (*rit == 2) { m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); ofs += ofs_stage; qDebug("DownChannelizer::setFilterChain: upper half: ofs: %f", ofs); } } return ofs; } void DownChannelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); } void DownChannelizer::debugFilterChain() { qDebug("DownChannelizer::debugFilterChain: %lu stages", m_filterStages.size()); for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) { switch ((*it)->m_mode) { case FilterStage::ModeCenter: qDebug("DownChannelizer::debugFilterChain: center %s", (*it)->m_sse ? "sse" : "no_sse"); break; case FilterStage::ModeLowerHalf: qDebug("DownChannelizer::debugFilterChain: lower %s", (*it)->m_sse ? "sse" : "no_sse"); break; case FilterStage::ModeUpperHalf: qDebug("DownChannelizer::debugFilterChain: upper %s", (*it)->m_sse ? "sse" : "no_sse"); break; default: qDebug("DownChannelizer::debugFilterChain: none %s", (*it)->m_sse ? "sse" : "no_sse"); break; } } }