/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2020-2021 Jon Beniston, M7RCE // // Copyright (C) 2020 Kacper Michajłow // // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_ROOTRAISEDCOSINE_H #define INCLUDE_ROOTRAISEDCOSINE_H #include #include #include "dsp/dsptypes.h" // Root-raised-cosine low-pass filter for pulse shaping, without intersymbol interference (ISI) // https://en.wikipedia.org/wiki/Root-raised-cosine_filter // This could be optimised in to a polyphase filter, as samplesPerSymbol-1 inputs // to filter() should be zero, as the data is upsampled to the sample rate template class RootRaisedCosine { public: RootRaisedCosine() : m_ptr(0) { } // beta - roll-off factor // symbolSpan - number of symbols over which the filter is spread // samplesPerSymbol - number of samples per symbol // normaliseUpsampledAmplitude - when true, scale the filter such that an upsampled // (by samplesPerSymbol) bipolar sequence (E.g. [1 0 0 -1 0 0..]) has maximum // output values close to (1,-1) void create(double beta, int symbolSpan, int samplesPerSymbol, bool normaliseUpsampledAmplitude = false) { int nTaps = symbolSpan * samplesPerSymbol + 1; int i, j; // check constraints if(!(nTaps & 1)) { qDebug("Root raised cosine filter has to have an odd number of taps"); nTaps++; } // make room m_samples.resize(nTaps); for(int i = 0; i < nTaps; i++) m_samples[i] = 0; m_ptr = 0; m_taps.resize(nTaps / 2 + 1); // calculate filter taps for(i = 0; i < nTaps / 2 + 1; i++) { double t = (i - (nTaps / 2)) / (double)samplesPerSymbol; double Ts = 1.0; double numerator = 1.0/Ts * (sin(M_PI * t / Ts * (1.0-beta)) + 4.0*beta*t/Ts*cos(M_PI*t/Ts*(1+beta))); double b = (4.0 * beta * t / Ts); double denominator = M_PI * t / Ts * (1-b*b); if ((numerator == 0.0) && (denominator == 0.0)) m_taps[i] = 1.0/Ts * (1.0+beta*(4.0/M_PI-1.0)); else if (denominator == 0.0) m_taps[i] = beta/(Ts*sqrt(2.0)) * ((1+2.0/M_PI)*sin(M_PI/(4.0*beta)) + (1.0-2.0/M_PI)*cos(M_PI/(4.0*beta))); else m_taps[i] = numerator/denominator; } // normalize if (!normaliseUpsampledAmplitude) { // normalize energy double sum = 0; for(i = 0; i < (int)m_taps.size() - 1; i++) sum += std::pow(m_taps[i], 2.0) * 2; sum += std::pow(m_taps[i], 2.0); sum = std::sqrt(sum); for(i = 0; i < (int)m_taps.size(); i++) m_taps[i] /= sum; } else { // Calculate maximum output of filter, assuming upsampled bipolar input E.g. [1 0 0 -1 0 0..] // This doesn't necessarily include the centre tap, so we try each offset double maxGain = 0.0; for (i = 0; i < samplesPerSymbol; i++) { double g = 0.0; for (j = 0; j < (int)m_taps.size() - 1; j += samplesPerSymbol) g += std::fabs(2.0 * m_taps[j]); if ((i & 1) == 0) g += std::fabs(m_taps[j]); if (g > maxGain) maxGain = g; } // Scale up so maximum out is 1 for(i = 0; i < (int)m_taps.size(); i++) m_taps[i] /= maxGain; } } Type filter(Type sample) { Type acc = 0; unsigned int n_samples = m_samples.size(); unsigned int n_taps = m_taps.size() - 1; unsigned int a = m_ptr; unsigned int b = a == n_samples - 1 ? 0 : a + 1; m_samples[m_ptr] = sample; for (unsigned int i = 0; i < n_taps; ++i) { acc += (m_samples[a] + m_samples[b]) * m_taps[i]; a = (a == 0) ? n_samples - 1 : a - 1; b = (b == n_samples - 1) ? 0 : b + 1; } acc += m_samples[a] * m_taps[n_taps]; m_ptr = (m_ptr == n_samples - 1) ? 0 : m_ptr + 1; return acc; } private: std::vector m_taps; std::vector m_samples; unsigned int m_ptr; }; #endif // INCLUDE_ROOTRAISEDCOSINE_H