/*---------------------------------------------------------------------------*\ FILE........: fsk.c AUTHOR......: Brady O'Brien DATE CREATED: 7 January 2016 C Implementation of 2/4FSK modulator/demodulator, based on octave/fsk_horus.m \*---------------------------------------------------------------------------*/ /* Copyright (C) 2016 David Rowe All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ /*---------------------------------------------------------------------------*\ DEFINES \*---------------------------------------------------------------------------*/ /* P oversampling rate constant -- should probably be init-time configurable */ #define horus_P 8 /* Define this to enable EbNodB estimate */ /* This needs square roots, may take more cpu time than it's worth */ #define EST_EBNO /* This is a flag for the freq. estimator to use a precomputed/rt computed hann window table On platforms with slow cosf, this will produce a substantial speedup at the cost of a small amount of memory */ #define USE_HANN_TABLE /* This flag turns on run-time hann table generation. If USE_HANN_TABLE is unset, this flag has no effect. If USE_HANN_TABLE is set and this flag is set, the hann table will be allocated and generated when fsk_init or fsk_init_hbr is called. If this flag is not set, a hann function table of size fsk->Ndft MUST be provided. On small platforms, this can be used with a precomputed table to save memory at the cost of flash space. */ #define GENERATE_HANN_TABLE_RUNTIME /* Turn off table generation if on cortex M4 to save memory */ #ifdef CORTEX_M4 #undef USE_HANN_TABLE #endif /*---------------------------------------------------------------------------*\ INCLUDES \*---------------------------------------------------------------------------*/ #include #include #include #include #include "fsk.h" #include "comp_prim.h" #include "kiss_fftr.h" #include "modem_probe.h" namespace FreeDV { /*---------------------------------------------------------------------------*\ FUNCTIONS \*---------------------------------------------------------------------------*/ static void stats_init(struct FSK *fsk); #ifdef USE_HANN_TABLE /* This is used by fsk_create and fsk_create_hbr to generate a hann function table */ static void fsk_generate_hann_table(struct FSK* fsk){ int Ndft = fsk->Ndft; int i; /* Set up complex oscilator to calculate hann function */ COMP dphi = comp_exp_j((2*M_PI)/((float)Ndft-1)); COMP rphi = {.5,0}; rphi = cmult(cconj(dphi),rphi); for (i = 0; i < Ndft; i++) { rphi = cmult(dphi,rphi); float hannc = .5-rphi.real; //float hann = .5-(.5*cosf((2*M_PI*(float)(i))/((float)Ndft-1))); fsk->hann_table[i] = hannc; } } #endif /*---------------------------------------------------------------------------*\ FUNCTION....: fsk_create_hbr AUTHOR......: Brady O'Brien DATE CREATED: 11 February 2016 Create and initialize an instance of the FSK modem. Returns a pointer to the modem state/config struct. One modem config struct may be used for both mod and demod. returns NULL on failure. \*---------------------------------------------------------------------------*/ struct FSK * fsk_create_hbr(int Fs, int Rs,int P,int M, int tx_f1, int tx_fs) { struct FSK *fsk; int i; int memold; int Ndft = 0; /* Number of symbols in a processing frame */ int nsyms = 48; /* Check configuration validity */ assert(Fs > 0 ); assert(Rs > 0 ); assert(tx_f1 > 0); assert(tx_fs > 0); assert(P > 0); /* Ts (Fs/Rs) must be an integer */ assert( (Fs%Rs) == 0 ); /* Ts/P (Fs/Rs/P) must be an integer */ assert( ((Fs/Rs)%P) == 0 ); assert( M==2 || M==4); fsk = (struct FSK*) malloc(sizeof(struct FSK)); if(fsk == NULL) return NULL; /* Set constant config parameters */ fsk->Fs = Fs; fsk->Rs = Rs; fsk->Ts = Fs/Rs; fsk->burst_mode = 0; fsk->N = fsk->Ts*nsyms; fsk->P = P; fsk->Nsym = nsyms; fsk->Nmem = fsk->N+(2*fsk->Ts); fsk->f1_tx = tx_f1; fsk->fs_tx = tx_fs; fsk->nin = fsk->N; fsk->mode = M==2 ? MODE_2FSK : MODE_4FSK; fsk->Nbits = M==2 ? fsk->Nsym : fsk->Nsym*2; /* Find smallest 2^N value that fits Fs for efficient FFT */ /* It would probably be better to use KISS-FFt's routine here */ for(i=1; i; i<<=1) if((fsk->N)&i) Ndft = i; fsk->Ndft = Ndft; fsk->est_min = Rs/4; if(fsk->est_min<0) fsk->est_min = 0; fsk->est_max = (Fs/2)-Rs/4; fsk->est_space = Rs-(Rs/5); /* Set up rx state */ for( i=0; iphi_c[i] = comp_exp_j(0); memold = (4*fsk->Ts); fsk->nstash = memold; fsk->samp_old = (COMP*) malloc(sizeof(COMP)*memold); if(fsk->samp_old == NULL){ free(fsk); return NULL; } for(i=0;isamp_old[i].real = 0; fsk->samp_old[i].imag = 0; } fsk->fft_cfg = kiss_fft_alloc(fsk->Ndft,0,NULL,NULL); if(fsk->fft_cfg == NULL){ free(fsk->samp_old); free(fsk); return NULL; } fsk->fft_est = (float*)malloc(sizeof(float)*fsk->Ndft/2); if(fsk->fft_est == NULL){ free(fsk->samp_old); free(fsk->fft_cfg); free(fsk); return NULL; } #ifdef USE_HANN_TABLE #ifdef GENERATE_HANN_TABLE_RUNTIME fsk->hann_table = (float*)malloc(sizeof(float)*fsk->Ndft); if(fsk->hann_table == NULL){ free(fsk->fft_est); free(fsk->samp_old); free(fsk->fft_cfg); free(fsk); return NULL; } fsk_generate_hann_table(fsk); #else fsk->hann_table = NULL; #endif #endif for(i=0;iNdft/2;i++)fsk->fft_est[i] = 0; fsk->norm_rx_timing = 0; /* Set up tx state */ fsk->tx_phase_c = comp_exp_j(0); /* Set up demod stats */ fsk->EbNodB = 0; for( i=0; if_est[i] = 0; fsk->ppm = 0; fsk->stats = (struct MODEM_STATS*)malloc(sizeof(struct MODEM_STATS)); if(fsk->stats == NULL){ free(fsk->fft_est); free(fsk->samp_old); free(fsk->fft_cfg); free(fsk); return NULL; } stats_init(fsk); fsk->normalise_eye = 1; return fsk; } #define HORUS_MIN 800 #define HORUS_MAX 2500 #define HORUS_MIN_SPACING 100 /*---------------------------------------------------------------------------*\ FUNCTION....: fsk_create AUTHOR......: Brady O'Brien DATE CREATED: 7 January 2016 Create and initialize an instance of the FSK modem. Returns a pointer to the modem state/config struct. One modem config struct may be used for both mod and demod. returns NULL on failure. \*---------------------------------------------------------------------------*/ struct FSK * fsk_create(int Fs, int Rs,int M, int tx_f1, int tx_fs) { struct FSK *fsk; int i; int Ndft = 0; int memold; /* Check configuration validity */ assert(Fs > 0 ); assert(Rs > 0 ); assert(tx_f1 > 0); assert(tx_fs > 0); assert(horus_P > 0); /* Ts (Fs/Rs) must be an integer */ assert( (Fs%Rs) == 0 ); /* Ts/P (Fs/Rs/P) must be an integer */ assert( ((Fs/Rs)%horus_P) == 0 ); assert( M==2 || M==4); fsk = (struct FSK*) malloc(sizeof(struct FSK)); if(fsk == NULL) return NULL; Ndft = 1024; /* Set constant config parameters */ fsk->Fs = Fs; fsk->Rs = Rs; fsk->Ts = Fs/Rs; fsk->N = Fs; fsk->burst_mode = 0; fsk->P = horus_P; fsk->Nsym = fsk->N/fsk->Ts; fsk->Ndft = Ndft; fsk->Nmem = fsk->N+(2*fsk->Ts); fsk->f1_tx = tx_f1; fsk->fs_tx = tx_fs; fsk->nin = fsk->N; fsk->mode = M==2 ? MODE_2FSK : MODE_4FSK; fsk->Nbits = M==2 ? fsk->Nsym : fsk->Nsym*2; fsk->est_min = HORUS_MIN; fsk->est_max = HORUS_MAX; fsk->est_space = HORUS_MIN_SPACING; /* Set up rx state */ for( i=0; iphi_c[i] = comp_exp_j(0); memold = (4*fsk->Ts); fsk->nstash = memold; fsk->samp_old = (COMP*) malloc(sizeof(COMP)*memold); if(fsk->samp_old == NULL){ free(fsk); return NULL; } for(i=0;isamp_old[i].real = 0.0; fsk->samp_old[i].imag = 0.0; } fsk->fft_cfg = kiss_fft_alloc(Ndft,0,NULL,NULL); if(fsk->fft_cfg == NULL){ free(fsk->samp_old); free(fsk); return NULL; } fsk->fft_est = (float*)malloc(sizeof(float)*fsk->Ndft/2); if(fsk->fft_est == NULL){ free(fsk->samp_old); free(fsk->fft_cfg); free(fsk); return NULL; } #ifdef USE_HANN_TABLE #ifdef GENERATE_HANN_TABLE_RUNTIME fsk->hann_table = (float*)malloc(sizeof(float)*fsk->Ndft); if(fsk->hann_table == NULL){ free(fsk->fft_est); free(fsk->samp_old); free(fsk->fft_cfg); free(fsk); return NULL; } fsk_generate_hann_table(fsk); #else fsk->hann_table = NULL; #endif #endif for(i=0;ifft_est[i] = 0; fsk->norm_rx_timing = 0; /* Set up tx state */ fsk->tx_phase_c = comp_exp_j(0); /* Set up demod stats */ fsk->EbNodB = 0; for( i=0; if_est[i] = 0; fsk->ppm = 0; fsk->stats = (struct MODEM_STATS*)malloc(sizeof(struct MODEM_STATS)); if(fsk->stats == NULL){ free(fsk->fft_est); free(fsk->samp_old); free(fsk->fft_cfg); free(fsk); return NULL; } stats_init(fsk); fsk->normalise_eye = 1; return fsk; } /* make sure stats have known values in case monitoring process reads stats before they are set */ static void stats_init(struct FSK *fsk) { /* Take a sample for the eye diagrams */ int i,j,m; int P = fsk->P; int M = fsk->mode; /* due to oversample rate P, we have too many samples for eye trace. So lets output a decimated version */ /* asserts below as we found some problems over-running eye matrix */ /* TODO: refactor eye tracing code here and in fsk_demod */ int neyesamp_dec = ceil(((float)P*2)/MODEM_STATS_EYE_IND_MAX); int neyesamp = (P*2)/neyesamp_dec; assert(neyesamp <= MODEM_STATS_EYE_IND_MAX); fsk->stats->neyesamp = neyesamp; int eye_traces = MODEM_STATS_ET_MAX/M; fsk->stats->neyetr = fsk->mode*eye_traces; for(i=0; istats->rx_eye[i*M+m][j] = 0; } } } fsk->stats->rx_timing = fsk->stats->snr_est = 0; } void fsk_set_nsym(struct FSK *fsk,int nsyms){ assert(nsyms>0); int Ndft,i; Ndft = 0; /* Set constant config parameters */ fsk->N = fsk->Ts*nsyms; fsk->Nsym = nsyms; fsk->Nmem = fsk->N+(2*fsk->Ts); fsk->nin = fsk->N; fsk->Nbits = fsk->mode==2 ? fsk->Nsym : fsk->Nsym*2; /* Find smallest 2^N value that fits Fs for efficient FFT */ /* It would probably be better to use KISS-FFt's routine here */ for(i=1; i; i<<=1) if((fsk->N)&i) Ndft = i; fsk->Ndft = Ndft; free(fsk->fft_cfg); free(fsk->fft_est); fsk->fft_cfg = kiss_fft_alloc(Ndft,0,NULL,NULL); fsk->fft_est = (float*)malloc(sizeof(float)*fsk->Ndft/2); for(i=0;ifft_est[i] = 0; } /* Set the FSK modem into burst demod mode */ void fsk_enable_burst_mode(struct FSK *fsk,int nsyms){ fsk_set_nsym(fsk,nsyms); fsk->nin = fsk->N; fsk->burst_mode = 1; } void fsk_clear_estimators(struct FSK *fsk){ int i; /* Clear freq estimator state */ for(i=0; i < (fsk->Ndft/2); i++){ fsk->fft_est[i] = 0; } /* Reset timing diff correction */ fsk->nin = fsk->N; } uint32_t fsk_nin(struct FSK *fsk){ return (uint32_t)fsk->nin; } void fsk_destroy(struct FSK *fsk){ free(fsk->fft_cfg); free(fsk->samp_old); free(fsk->stats); free(fsk); } void fsk_get_demod_stats(struct FSK *fsk, struct MODEM_STATS *stats){ /* copy from internal stats, note we can't overwrite stats completely as it has other states rqd by caller, also we want a consistent interface across modem types for the freedv_api. */ stats->clock_offset = fsk->stats->clock_offset; stats->snr_est = fsk->stats->snr_est; // TODO: make this SNR not Eb/No stats->rx_timing = fsk->stats->rx_timing; stats->foff = fsk->stats->foff; stats->neyesamp = fsk->stats->neyesamp; stats->neyetr = fsk->stats->neyetr; memcpy(stats->rx_eye, fsk->stats->rx_eye, sizeof(stats->rx_eye)); memcpy(stats->f_est, fsk->stats->f_est, fsk->mode*sizeof(float)); /* these fields not used for FSK so set to something sensible */ stats->sync = 0; stats->nr = fsk->stats->nr; stats->Nc = fsk->stats->Nc; } /* * Set the minimum and maximum frequencies at which the freq. estimator can find tones */ void fsk_set_est_limits(struct FSK *fsk,int est_min, int est_max){ fsk->est_min = est_min; if(fsk->est_min<0) fsk->est_min = 0; fsk->est_max = est_max; } /* * Internal function to estimate the frequencies of the two tones within a block of samples. * This is split off because it is fairly complicated, needs a bunch of memory, and probably * takes more cycles than the rest of the demod. * Parameters: * fsk - FSK struct from demod containing FSK config * fsk_in - block of samples in this demod cycles, must be nin long * freqs - Array for the estimated frequencies * M - number of frequency peaks to find */ void fsk_demod_freq_est(struct FSK *fsk, COMP fsk_in[],float *freqs,int M){ int Ndft = fsk->Ndft; int Fs = fsk->Fs; int nin = fsk->nin; int i,j; float hann; float max; float tc; int imax; kiss_fft_cfg fft_cfg = fsk->fft_cfg; int *freqi = new int[M]; int f_min,f_max,f_zero; /* Array to do complex FFT from using kiss_fft */ kiss_fft_cpx *fftin = (kiss_fft_cpx*)malloc(sizeof(kiss_fft_cpx)*Ndft); kiss_fft_cpx *fftout = (kiss_fft_cpx*)malloc(sizeof(kiss_fft_cpx)*Ndft); #ifndef USE_HANN_TABLE COMP dphi = comp_exp_j((2*M_PI)/((float)Ndft-1)); COMP rphi = {.5,0}; rphi = cmult(cconj(dphi),rphi); #endif f_min = (fsk->est_min*Ndft)/Fs; f_max = (fsk->est_max*Ndft)/Fs; f_zero = (fsk->est_space*Ndft)/Fs; /* scale averaging time constant based on number of samples */ tc = 0.95*Ndft/Fs; int samps; int fft_samps; int fft_loops = nin / Ndft; for (j = 0; j < fft_loops; j++) { /* 48000 sample rate (for example) will have a spare */ /* 896 samples besides the 46 "Ndft" samples, so adjust */ samps = (nin - ((j + 1) * Ndft)); fft_samps = (samps >= Ndft) ? Ndft : samps; /* Copy FSK buffer into reals of FFT buffer and apply a hann window */ for(i=0; ihann_table[i]; #else //hann = 1-cosf((2*M_PI*(float)(i))/((float)fft_samps-1)); rphi = cmult(dphi,rphi); hann = .5-rphi.real; #endif fftin[i].r = hann*fsk_in[i+Ndft*j].real; fftin[i].i = hann*fsk_in[i+Ndft*j].imag; } /* Zero out the remaining slots on spare samples */ for(; ifft_est[i] = (fsk->fft_est[i]*(1-tc)) + (sqrtf(fftout[i].r)*tc); fftout[i].i = fsk->fft_est[i]; } } modem_probe_samp_f("t_fft_est", fsk->fft_est, Ndft/2); max = 0; /* Find the M frequency peaks here */ for(i=0; i max){ max = fftout[j].i; imax = j; } } /* Blank out FMax +/-Fspace/2 */ f_min = imax - f_zero; f_min = f_min < 0 ? 0 : f_min; f_max = imax + f_zero; f_max = f_max > Ndft ? Ndft : f_max; for(j=f_min; j= freqi[i-1]) i++; else{ j = freqi[i]; freqi[i] = freqi[i-1]; freqi[i-1] = j; if(i>1) i--; } } /* Convert freqs from indices to frequencies */ for(i=0; iN; int Ts = fsk->Ts; int Rs = fsk->Rs; int Fs = fsk->Fs; int nsym = fsk->Nsym; int nin = fsk->nin; int P = fsk->P; int Nmem = fsk->Nmem; int M = fsk->mode; int i, j, m, dc_i, cbuf_i; float ft1; int nstash = fsk->nstash; COMP* *f_int = new COMP*[M]; /* Filtered and downsampled symbol tones */ COMP *t = new COMP[M]; /* complex number temps */ COMP t_c; /* another complex temp */ COMP *phi_c = new COMP[M]; COMP phi_ft; int nold = Nmem-nin; COMP *dphi = new COMP[M]; COMP dphift; float rx_timing,norm_rx_timing,old_norm_rx_timing,d_norm_rx_timing,appm; int using_old_samps; COMP* sample_src; COMP* f_intbuf_m; float *f_est = new float[M]; float fc_avg, fc_tx; float meanebno,stdebno,eye_max; int neyesamp,neyeoffset; #ifdef MODEMPROBE_ENABLE char mp_name_tmp[20]; /* Temporary string for modem probe trace names */ #endif //for(size_t jj = 0; jjphi_c[m]; } /* Estimate tone frequencies */ fsk_demod_freq_est(fsk,fsk_in,f_est,M); modem_probe_samp_f("t_f_est",f_est,M); /* Allocate circular buffer for integration */ f_intbuf_m = (COMP*) malloc(sizeof(COMP)*Ts); /* allocate memory for the integrated samples */ for( m=0; mf_est[0]<1){ for( m=0; mf_est[m] = f_est[m]; } /* Initalize downmixers for each symbol tone */ for( m=0; mf_est[m])/(float)(Fs))); phi_c[m] = cmult(dphi[m],phi_c[m]); //fprintf(stderr,"F%d = %f",m,fsk->f_est[m]); /* Figure out how much to nudge each sample downmixer for every sample */ dphi[m] = comp_exp_j(2*M_PI*((fsk->f_est[m])/(float)(Fs))); } /* Integrate and downsample for symbol tones */ for(m=0; msamp_old[nstash-nold]); using_old_samps = 1; /* Pre-fill integration buffer */ for(dc_i=0; dc_i=nold && using_old_samps){ sample_src = &fsk_in[0]; dc_i = 0; using_old_samps = 0; /* Recalculate delta-phi after switching to new sample source */ phi_c[m] = comp_normalize(phi_c[m]); dphi_m = comp_exp_j(2*M_PI*((f_est_m)/(float)(Fs))); } /* Downconvert and place into integration buffer */ f_intbuf_m[dc_i]=cmult(sample_src[dc_i],cconj(phi_c[m])); #ifdef MODEMPROBE_ENABLE snprintf(mp_name_tmp,19,"t_f%zd_dc",m+1); modem_probe_samp_c(mp_name_tmp,&f_intbuf_m[dc_i],1); #endif /* Spin downconversion phases */ phi_c[m] = cmult(phi_c[m],dphi_m); } cbuf_i = dc_i; /* Integrate over Ts at offsets of Ts/P */ for(i=0; i<(nsym+1)*P; i++){ /* Downconvert and Place Ts/P samples in the integration buffers */ for(j=0; j<(Ts/P); j++,dc_i++){ /* Switch sample source to new samples when we run out of old ones */ if(dc_i>=nold && using_old_samps){ sample_src = &fsk_in[0]; dc_i = 0; using_old_samps = 0; /* Recalculate delta-phi after switching to new sample source */ phi_c[m] = comp_normalize(phi_c[m]); dphi_m = comp_exp_j(2*M_PI*((f_est_m)/(float)(Fs))); } /* Downconvert and place into integration buffer */ f_intbuf_m[cbuf_i+j]=cmult(sample_src[dc_i],cconj(phi_c[m])); #ifdef MODEMPROBE_ENABLE snprintf(mp_name_tmp,19,"t_f%zd_dc",m+1); modem_probe_samp_c(mp_name_tmp,&f_intbuf_m[cbuf_i+j],1); #endif /* Spin downconversion phases */ phi_c[m] = cmult(phi_c[m],dphi_m); } /* Dump internal samples */ cbuf_i += Ts/P; if(cbuf_i>=Ts) cbuf_i = 0; /* Integrate over the integration buffers, save samples */ float it_r = 0; float it_i = 0; for(j=0; jphi_c[m] = phi_c[m]; fsk->f_est[m] = f_est[m]; } /* Stash samples away in the old sample buffer for the next round of bit getting */ memcpy((void*)&(fsk->samp_old[0]),(void*)&(fsk_in[nin-nstash]),sizeof(COMP)*nstash); /* Fine Timing Estimation */ /* Apply magic nonlinearity to f1_int and f2_int, shift down to 0, * extract angle */ /* Figure out how much to spin the oscillator to extract magic spectral line */ dphift = comp_exp_j(2*M_PI*((float)(Rs)/(float)(P*Rs))); phi_ft.real = 1; phi_ft.imag = 0; t_c=comp0(); for(i=0; i<(nsym+1)*P; i++){ /* Get abs^2 of fx_int[i], and add 'em */ ft1 = 0; for( m=0; mnorm_rx_timing; fsk->norm_rx_timing = norm_rx_timing; /* Estimate sample clock offset */ d_norm_rx_timing = norm_rx_timing - old_norm_rx_timing; /* Filter out big jumps in due to nin change */ if(fabsf(d_norm_rx_timing) < .2){ appm = 1e6*d_norm_rx_timing/(float)nsym; fsk->ppm = .9*fsk->ppm + .1*appm; } /* Figure out how many samples are needed the next modem cycle */ /* Unless we're in burst mode */ if(!fsk->burst_mode){ if(norm_rx_timing > 0.25) fsk->nin = N+Ts/2; else if(norm_rx_timing < -0.25) fsk->nin = N-Ts/2; else fsk->nin = N; } modem_probe_samp_f("t_norm_rx_timing",&(norm_rx_timing),1); modem_probe_samp_i("t_nin",&(fsk->nin),1); /* Re-sample the integrators with linear interpolation magic */ int low_sample = (int)floorf(rx_timing); float fract = rx_timing - (float)low_sample; int high_sample = (int)ceilf(rx_timing); /* Vars for finding the max-of-4 for each bit */ float *tmax = new float[M]; #ifdef EST_EBNO meanebno = 0; stdebno = 0; #endif /* FINALLY, THE BITS */ /* also, resample fx_int */ for(i = 0; i < nsym; i++) { int st = (i+1)*P; for( m=0; mmax){ max = tmax[m]; sym = m; } if(tmax[m]>1; } } /* Produce soft decision symbols */ if(rx_sd != NULL){ /* Convert symbols from max^2 into max */ for( m=0; m 0.0) { stdebno = sqrt(stdebno); } else { stdebno = 0.0; } fsk->EbNodB = -6+(20*log10f((1e-6+meanebno)/(1e-6+stdebno))); #else fsk->EbNodB = 1; #endif /* Write some statistics to the stats struct */ /* Save clock offset in ppm */ fsk->stats->clock_offset = fsk->ppm; /* Calculate and save SNR from EbNodB estimate */ fsk->stats->snr_est = .5*fsk->stats->snr_est + .5*fsk->EbNodB;//+ 10*log10f(((float)Rs)/((float)Rs*M)); /* Save rx timing */ fsk->stats->rx_timing = (float)rx_timing; /* Estimate and save frequency offset */ fc_avg = (f_est[0]+f_est[1])/2; fc_tx = (fsk->f1_tx+fsk->f1_tx+fsk->fs_tx)/2; fsk->stats->foff = fc_tx-fc_avg; /* Take a sample for the eye diagrams ---------------------------------- */ /* due to oversample rate P, we have too many samples for eye trace. So lets output a decimated version. We use 2P as we want two symbols worth of samples in trace */ int neyesamp_dec = ceil(((float)P*2)/MODEM_STATS_EYE_IND_MAX); neyesamp = (P*2)/neyesamp_dec; assert(neyesamp <= MODEM_STATS_EYE_IND_MAX); fsk->stats->neyesamp = neyesamp; #ifdef I_DONT_UNDERSTAND neyeoffset = high_sample+1+(P*28); /* WTF this line? Where does "28" come from ? */ #endif /* ifdef-ed out as I am afraid it will index out of memory as P changes */ neyeoffset = high_sample+1; int eye_traces = MODEM_STATS_ET_MAX/M; int ind; fsk->stats->neyetr = fsk->mode*eye_traces; for( i=0; iMODEM_STATS_EYE_IND_MAX advance through integrated samples newamp_dec at a time so we dont overflow rx_eye[][] */ ind = 2*P*i + neyeoffset + j*neyesamp_dec; assert((i*M+m) < MODEM_STATS_ET_MAX); assert(ind < (nsym+1)*P); fsk->stats->rx_eye[i*M+m][j] = cabsolute(f_int[m][ind]); } } } if (fsk->normalise_eye) { eye_max = 0; /* Normalize eye to +/- 1 */ for(i=0; istats->rx_eye[i][j])>eye_max) eye_max = fabsf(fsk->stats->rx_eye[i][j]); for(i=0; istats->rx_eye[i][j] = fsk->stats->rx_eye[i][j]/eye_max; } fsk->stats->nr = 0; fsk->stats->Nc = 0; for(i=0; istats->f_est[i] = f_est[i]; } /* Dump some internal samples */ modem_probe_samp_f("t_EbNodB",&(fsk->EbNodB),1); modem_probe_samp_f("t_ppm",&(fsk->ppm),1); modem_probe_samp_f("t_rx_timing",&(rx_timing),1); #ifdef MODEMPROBE_ENABLE for( m=0; mtx_phase_c; /* Current complex TX phase */ int f1_tx = fsk->f1_tx; /* '0' frequency */ int fs_tx = fsk->fs_tx; /* space between frequencies */ int Ts = fsk->Ts; /* samples-per-symbol */ int Fs = fsk->Fs; /* sample freq */ int M = fsk->mode; COMP *dosc_f = new COMP[M]; /* phase shift per sample */ COMP dph; /* phase shift of current bit */ int i, j, m, bit_i, sym; /* Init the per sample phase shift complex numbers */ for( m=0; mNsym; i++){ sym = 0; /* Pack the symbol number from the bit stream */ for( m=M; m>>=1; ){ uint8_t bit = tx_bits[bit_i]; bit = (bit==1)?1:0; sym = (sym<<1)|bit; bit_i++; } /* Look up symbol phase shift */ dph = dosc_f[sym]; /* Spin the oscillator for a symbol period */ for(j=0; jtx_phase_c = tx_phase_c; delete[] dosc_f; } void fsk_mod_c(struct FSK *fsk,COMP fsk_out[],uint8_t tx_bits[]){ COMP tx_phase_c = fsk->tx_phase_c; /* Current complex TX phase */ int f1_tx = fsk->f1_tx; /* '0' frequency */ int fs_tx = fsk->fs_tx; /* space between frequencies */ int Ts = fsk->Ts; /* samples-per-symbol */ int Fs = fsk->Fs; /* sample freq */ int M = fsk->mode; COMP *dosc_f = new COMP[M]; /* phase shift per sample */ COMP dph; /* phase shift of current bit */ int i, j, bit_i, sym; int m; /* Init the per sample phase shift complex numbers */ for( m=0; mNsym; i++){ sym = 0; /* Pack the symbol number from the bit stream */ for( m=M; m>>=1; ){ uint8_t bit = tx_bits[bit_i]; bit = (bit==1)?1:0; sym = (sym<<1)|bit; bit_i++; } /* Look up symbol phase shift */ dph = dosc_f[sym]; /* Spin the oscillator for a symbol period */ for(j=0; jtx_phase_c = tx_phase_c; delete[] dosc_f; } /* Modulator that assume an external VCO. The output is a voltage that changes for each symbol */ void fsk_mod_ext_vco(struct FSK *fsk, float vco_out[], uint8_t tx_bits[]) { int f1_tx = fsk->f1_tx; /* '0' frequency */ int fs_tx = fsk->fs_tx; /* space between frequencies */ int Ts = fsk->Ts; /* samples-per-symbol */ int M = fsk->mode; int i, j, m, sym, bit_i; bit_i = 0; for(i=0; iNsym; i++) { /* generate the symbol number from the bit stream, e.g. 0,1 for 2FSK, 0,1,2,3 for 4FSK */ sym = 0; /* unpack the symbol number from the bit stream */ for( m=M; m>>=1; ){ uint8_t bit = tx_bits[bit_i]; bit = (bit==1)?1:0; sym = (sym<<1)|bit; bit_i++; } /* Map 'sym' to VCO frequency Note: drive is inverted, a higher tone drives VCO voltage lower */ //fprintf(stderr, "i: %d sym: %d freq: %f\n", i, sym, f1_tx + fs_tx*(float)sym); for(j=0; jnormalise_eye = normalise_enable; } } // freeDV