/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef PLUGINS_CHANNELTX_MODATV_ATVMODSOURCE_H_ #define PLUGINS_CHANNELTX_MODATV_ATVMODSOURCE_H_ #include #include #include #include #include #include #include #include "dsp/channelsamplesource.h" #include "dsp/nco.h" #include "dsp/interpolator.h" #include "util/movingaverage.h" #include "dsp/fftfilt.h" #include "util/message.h" #include "atvmodsettings.h" class MessageQueue; class ATVModSource : public ChannelSampleSource { public: ATVModSource(); ~ATVModSource(); virtual void pull(SampleVector::iterator begin, unsigned int nbSamples); virtual void pullOne(Sample& sample); virtual void prefetch(unsigned int nbSamples); int getEffectiveSampleRate() const { return m_tvSampleRate; }; double getMagSq() const { return m_movingAverage.asDouble(); } void getCameraNumbers(std::vector& numbers); void setMessageQueueToGUI(MessageQueue *messageQueue) { m_messageQueueToGUI = messageQueue; } void getLevels(Real& rmsLevel, Real& peakLevel, Real& numSamples) const { rmsLevel = m_rmsLevel; peakLevel = m_peakLevel; numSamples = m_levelNbSamples; } void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = false); void applySettings(const ATVModSettings& settings, bool force = false); void openImage(const QString& fileName); void openVideo(const QString& fileName); void seekVideoFileStream(int seekPercentage); void reportVideoFileSourceStreamTiming(); void configureCameraIndex(int index); void configureCameraData(uint32_t index, float mnaualFPS, bool manualFPSEnable); static void getBaseValues(int outputSampleRate, int linesPerSecond, int& sampleRateUnits, uint32_t& nbPointsPerRateUnit); static float getRFBandwidthDivisor(ATVModSettings::ATVModulation modulation); private: class ATVCamera { public: cv::VideoCapture m_camera; //!< camera object cv::Mat m_videoframeOriginal; //!< camera non resized image cv::Mat m_videoFrame; //!< displayable camera frame int m_cameraNumber; //!< camera device number float m_videoFPS; //!< camera FPS rate float m_videoFPSManual; //!< camera FPS rate manually set bool m_videoFPSManualEnable; //!< Enable camera FPS rate manual set value int m_videoWidth; //!< camera frame width int m_videoHeight; //!< camera frame height float m_videoFx; //!< camera horizontal scaling factor float m_videoFy; //!< camera vertictal scaling factor float m_videoFPSq; //!< camera FPS sacaling factor float m_videoFPSqManual; //!< camera FPS sacaling factor manually set float m_videoFPSCount; //!< camera FPS fractional counter int m_videoPrevFPSCount; //!< camera FPS previous integer counter ATVCamera() : m_cameraNumber(-1), m_videoFPS(25.0f), m_videoFPSManual(20.0f), m_videoFPSManualEnable(false), m_videoWidth(1), m_videoHeight(1), m_videoFx(1.0f), m_videoFy(1.0f), m_videoFPSq(1.0f), m_videoFPSqManual(1.0f), m_videoFPSCount(0.0f), m_videoPrevFPSCount(0) {} ATVCamera(const ATVCamera& camera) : m_camera(camera.m_camera), m_videoframeOriginal(camera.m_videoframeOriginal), m_videoFrame(camera.m_videoFrame), m_cameraNumber(camera.m_cameraNumber), m_videoFPS(camera.m_videoFPS), m_videoFPSManual(camera.m_videoFPSManual), m_videoFPSManualEnable(camera.m_videoFPSManualEnable), m_videoWidth(camera.m_videoWidth), m_videoHeight(camera.m_videoHeight), m_videoFx(camera.m_videoFx), m_videoFy(camera.m_videoFy), m_videoFPSq(camera.m_videoFPSq), m_videoFPSqManual(camera.m_videoFPSqManual), m_videoFPSCount(camera.m_videoFPSCount), m_videoPrevFPSCount(camera.m_videoPrevFPSCount) {} }; int m_channelSampleRate; int m_channelFrequencyOffset; ATVModSettings m_settings; NCO m_carrierNco; Complex m_modSample; float m_modPhasor; //!< For FM modulation Interpolator m_interpolator; Real m_interpolatorDistance; Real m_interpolatorDistanceRemain; int m_tvSampleRate; //!< sample rate for generating signal uint32_t m_pointsPerLine; //!< Number of points per full line int m_pointsPerSync; //!< number of line points for the horizontal sync int m_pointsPerBP; //!< number of line points for the back porch int m_pointsPerImgLine; //!< number of line points for the image line uint32_t m_pointsPerFP; //!< number of line points for the front porch int m_pointsPerFSync; //!< number of line points for the field first sync uint32_t m_pointsPerHBar; //!< number of line points for a bar of the bar chart uint32_t m_linesPerVBar; //!< number of lines for a bar of the bar chart uint32_t m_pointsPerTU; //!< number of line points per time unit int m_nbLines; //!< number of lines per complete frame int m_nbLines2; //!< same number as above (non interlaced) or half the number above (interlaced) uint32_t m_nbImageLines; //!< number of image lines excluding synchronization lines uint32_t m_nbImageLines2; //!< same number as above (non interlaced) or half the number above (interlaced) int m_nbHorizPoints; //!< number of line points per horizontal line int m_nbSyncLinesHeadE; //!< number of header sync lines on even frame int m_nbSyncLinesHeadO; //!< number of header sync lines on odd frame int m_nbSyncLinesBottom;//!< number of sync lines at bottom int m_nbLongSyncLines; //!< number of whole long sync lines for vertical synchronization int m_nbHalfLongSync; //!< number of half long sync / equalization lines int m_nbWholeEqLines; //!< number of whole equalizing lines bool m_singleLongSync; //!< single or double long sync per long sync line int m_nbBlankLines; //!< number of lines in a frame (full or half) that are blanked (black) at the top of the image float m_blankLineLvel; //!< video level of blank lines float m_hBarIncrement; //!< video level increment at each horizontal bar increment float m_vBarIncrement; //!< video level increment at each vertical bar increment bool m_interleaved; //!< true if image is interlaced (2 half frames per frame) bool m_evenImage; //!< in interlaced mode true if this is an even image QMutex m_settingsMutex; int m_horizontalCount; //!< current point index on line int m_lineCount; //!< current line index in frame float m_fps; //!< resulting frames per second MovingAverageUtil m_movingAverage; quint32 m_levelCalcCount; Real m_rmsLevel; Real m_peakLevelOut; Real m_peakLevel; Real m_levelSum; cv::Mat m_imageFromFile; //!< original image not resized not overlaid by text cv::Mat m_imageOriginal; //!< original not resized image cv::Mat m_image; //!< resized image for transmission at given rate bool m_imageOK; cv::VideoCapture m_video; //!< current video capture cv::Mat m_videoframeOriginal; //!< current frame from video cv::Mat m_videoFrame; //!< current displayable video frame float m_videoFPS; //!< current video FPS rate int m_videoWidth; //!< current video frame width int m_videoHeight; //!< current video frame height float m_videoFx; //!< current video horizontal scaling factor float m_videoFy; //!< current video vertictal scaling factor float m_videoFPSq; //!< current video FPS sacaling factor float m_videoFPSCount; //!< current video FPS fractional counter int m_videoPrevFPSCount; //!< current video FPS previous integer counter int m_videoLength; //!< current video length in frames bool m_videoEOF; //!< current video has reached end of file bool m_videoOK; std::vector m_cameras; //!< vector of available cameras int m_cameraIndex; //!< curent camera index in list of available cameras std::string m_overlayText; QString m_imageFileName; QString m_videoFileName; // Used for standard SSB fftfilt* m_SSBFilter; Complex* m_SSBFilterBuffer; int m_SSBFilterBufferIndex; // Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme) fftfilt* m_DSBFilter; Complex* m_DSBFilterBuffer; int m_DSBFilterBufferIndex; MessageQueue *m_messageQueueToGUI; static const int m_ssbFftLen; static const float m_blackLevel; static const float m_spanLevel; static const int m_levelNbSamples; static const int m_nbBars; //!< number of bars in bar or chessboard patterns static const int m_cameraFPSTestNbFrames; //!< number of frames for camera FPS test void pullFinalize(Complex& ci, Sample& sample); void pullVideo(Real& sample); void calculateLevel(Real& sample); void modulateSample(); Complex& modulateSSB(Real& sample); Complex& modulateVestigialSSB(Real& sample); void applyStandard(const ATVModSettings& settings); void resizeImage(); void calculateVideoSizes(); void resizeVideo(); void scanCameras(); void releaseCameras(); void calculateCamerasSizes(); void resizeCameras(); void resizeCamera(); void mixImageAndText(cv::Mat& image); MessageQueue *getMessageQueueToGUI() { return m_messageQueueToGUI; } inline void pullImageLine(Real& sample, bool noHSync = false) { if (m_horizontalCount < m_pointsPerSync) // sync pulse { sample = noHSync ? m_blackLevel : 0.0f; // ultra-black } else if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP) // back porch { sample = m_blackLevel; // black } else if (m_horizontalCount < m_pointsPerSync + m_pointsPerBP + m_pointsPerImgLine) { int pointIndex = m_horizontalCount - (m_pointsPerSync + m_pointsPerBP); int oddity = m_lineCount < m_nbLines2 + 1 ? 0 : 1; int iLine = oddity == 0 ? m_lineCount : m_lineCount - m_nbLines2 - 1; int iLineImage = iLine - m_nbBlankLines - (oddity == 0 ? m_nbSyncLinesHeadE : m_nbSyncLinesHeadO); switch(m_settings.m_atvModInput) { case ATVModSettings::ATVModInputHBars: sample = (((float)pointIndex) / m_pointsPerHBar) * m_hBarIncrement + m_blackLevel; break; case ATVModSettings::ATVModInputVBars: sample = (((float)iLine) / m_linesPerVBar) * m_vBarIncrement + m_blackLevel; break; case ATVModSettings::ATVModInputChessboard: sample = (((iLine / m_linesPerVBar)*5 + (pointIndex / m_pointsPerHBar)) % 2) * m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; break; case ATVModSettings::ATVModInputHGradient: sample = (pointIndex / (float) m_pointsPerImgLine) * m_spanLevel + m_blackLevel; break; case ATVModSettings::ATVModInputVGradient: sample = ((iLine -5) / (float) m_nbImageLines2) * m_spanLevel + m_blackLevel; break; case ATVModSettings::ATVModInputImage: if (!m_imageOK || (iLineImage < -oddity) || m_image.empty()) { sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; } else { unsigned char pixv; if (m_interleaved) { pixv = m_image.at(2*iLineImage + oddity, pointIndex); // row (y), col (x) } else { pixv = m_image.at(iLineImage, pointIndex); // row (y), col (x) } sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel; } break; case ATVModSettings::ATVModInputVideo: if (!m_videoOK || (iLineImage < -oddity) || m_videoFrame.empty()) { sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; } else { unsigned char pixv; if (m_interleaved) { pixv = m_videoFrame.at(2*iLineImage + oddity, pointIndex); // row (y), col (x) } else { pixv = m_videoFrame.at(iLineImage, pointIndex); // row (y), col (x) } sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel; } break; case ATVModSettings::ATVModInputCamera: if ((iLineImage < -oddity) || (m_cameraIndex < 0)) { sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; } else { ATVCamera& camera = m_cameras[m_cameraIndex]; if (camera.m_videoFrame.empty()) { sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; } else { unsigned char pixv; if (m_interleaved) { pixv = camera.m_videoFrame.at(2*iLineImage + oddity, pointIndex); // row (y), col (x) } else { pixv = camera.m_videoFrame.at(iLineImage, pointIndex); // row (y), col (x) } sample = (pixv / 256.0f) * m_spanLevel + m_blackLevel; } } break; case ATVModSettings::ATVModInputUniform: default: sample = m_spanLevel * m_settings.m_uniformLevel + m_blackLevel; } } else // front porch { sample = m_blackLevel; // black } } inline void pullVSyncLineLongPulses(Real& sample) { int halfIndex = m_horizontalCount % (m_nbHorizPoints/2); if (halfIndex < (m_nbHorizPoints/2) - m_pointsPerSync) // ultra-black { sample = 0.0f; } else // black { if (m_singleLongSync && (m_horizontalCount < m_nbHorizPoints/2)) { sample = 0.0f; } else { sample = m_blackLevel; } } } inline void pullVSyncLineEqualizingPulses(Real& sample) { if (m_horizontalCount < m_pointsPerSync) { sample = 0.0f; // ultra-black } else if (m_horizontalCount < (m_nbHorizPoints/2)) { sample = m_blackLevel; // black } else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerFSync) { sample = 0.0f; // ultra-black } else { sample = m_blackLevel; // black } } inline void pullVSyncLineEqualizingThenLongPulses(Real& sample) { if (m_horizontalCount < m_pointsPerSync) { sample = 0.0f; // ultra-black } else if (m_horizontalCount < (m_nbHorizPoints/2)) { sample = m_blackLevel; // black } else if (m_horizontalCount < m_nbHorizPoints - m_pointsPerSync) { sample = 0.0f; // ultra-black } else { sample = m_blackLevel; // black } } inline void pullVSyncLineLongThenEqualizingPulses(Real& sample) { if (m_horizontalCount < (m_nbHorizPoints/2) - m_pointsPerSync) { sample = 0.0f; // ultra-black } else if (m_horizontalCount < (m_nbHorizPoints/2)) { sample = m_blackLevel; // black } else if (m_horizontalCount < (m_nbHorizPoints/2) + m_pointsPerFSync) { sample = 0.0f; // ultra-black } else { sample = m_blackLevel; // black } } inline void pullVSyncLine(Real& sample) { if (m_lineCount < m_nbLines2 + 1) // even { int fieldLine = m_lineCount; if (fieldLine < m_nbLongSyncLines) // 0,1: Whole line "long" pulses { pullVSyncLineLongPulses(sample); } else if (fieldLine < m_nbLongSyncLines + m_nbHalfLongSync) // long pulse then equalizing pulse { pullVSyncLineLongThenEqualizingPulses(sample); } else if (fieldLine < m_nbLongSyncLines + m_nbHalfLongSync + m_nbWholeEqLines) // Whole line equalizing pulses { pullVSyncLineEqualizingPulses(sample); } else if (fieldLine > m_nbLines2 - m_nbHalfLongSync) // equalizing pulse then long pulse { pullVSyncLineEqualizingThenLongPulses(sample); } else if (fieldLine > m_nbLines2 - m_nbHalfLongSync - m_nbWholeEqLines) // Whole line equalizing pulses { pullVSyncLineEqualizingPulses(sample); } else // black images { if (m_horizontalCount < m_pointsPerSync) { sample = 0.0f; } else { sample = m_blankLineLvel; } } } else // odd { int fieldLine = m_lineCount - m_nbLines2 - 1; if (fieldLine < m_nbLongSyncLines) // 0,1: Whole line "long" pulses { pullVSyncLineLongPulses(sample); } else if (fieldLine < m_nbLongSyncLines + m_nbWholeEqLines) // Whole line equalizing pulses { pullVSyncLineEqualizingPulses(sample); } else if (fieldLine > m_nbLines2 - 1 - m_nbWholeEqLines - m_nbHalfLongSync) // Whole line equalizing pulses { pullVSyncLineEqualizingPulses(sample); } else // black images { if (m_horizontalCount < m_pointsPerSync) { sample = 0.0f; } else { sample = m_blankLineLvel; } } } } }; #endif /* PLUGINS_CHANNELTX_MODATV_ATVMOD_H_ */