/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_CHANALYZERNG_H #define INCLUDE_CHANALYZERNG_H #include #include #include "dsp/basebandsamplesink.h" #include "channel/channelsinkapi.h" #include "dsp/interpolator.h" #include "dsp/ncof.h" #include "dsp/fftcorr.h" #include "dsp/fftfilt.h" #include "dsp/phaselockcomplex.h" #include "dsp/freqlockcomplex.h" #include "audio/audiofifo.h" #include "util/message.h" #include "chanalyzerngsettings.h" #define ssbFftLen 1024 class DeviceSourceAPI; class ThreadedBasebandSampleSink; class DownChannelizer; class ChannelAnalyzerNG : public BasebandSampleSink, public ChannelSinkAPI { public: class MsgConfigureChannelAnalyzer : public Message { MESSAGE_CLASS_DECLARATION public: const ChannelAnalyzerNGSettings& getSettings() const { return m_settings; } bool getForce() const { return m_force; } static MsgConfigureChannelAnalyzer* create(const ChannelAnalyzerNGSettings& settings, bool force) { return new MsgConfigureChannelAnalyzer(settings, force); } private: ChannelAnalyzerNGSettings m_settings; bool m_force; MsgConfigureChannelAnalyzer(const ChannelAnalyzerNGSettings& settings, bool force) : Message(), m_settings(settings), m_force(force) { } }; class MsgConfigureChannelAnalyzerOld : public Message { MESSAGE_CLASS_DECLARATION public: int getChannelSampleRate() const { return m_channelSampleRate; } Real getBandwidth() const { return m_Bandwidth; } Real getLoCutoff() const { return m_LowCutoff; } int getSpanLog2() const { return m_spanLog2; } bool getSSB() const { return m_ssb; } bool getPLL() const { return m_pll; } bool getFLL() const { return m_fll; } unsigned int getPLLPSKOrder() const { return m_pllPskOrder; } static MsgConfigureChannelAnalyzerOld* create( int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, bool fll, unsigned int pllPskOrder) { return new MsgConfigureChannelAnalyzerOld( channelSampleRate, Bandwidth, LowCutoff, spanLog2, ssb, pll, fll, pllPskOrder); } private: int m_channelSampleRate; Real m_Bandwidth; Real m_LowCutoff; int m_spanLog2; bool m_ssb; bool m_pll; bool m_fll; unsigned int m_pllPskOrder; MsgConfigureChannelAnalyzerOld( int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, bool fll, unsigned int pllPskOrder) : Message(), m_channelSampleRate(channelSampleRate), m_Bandwidth(Bandwidth), m_LowCutoff(LowCutoff), m_spanLog2(spanLog2), m_ssb(ssb), m_pll(pll), m_fll(fll), m_pllPskOrder(pllPskOrder) { } }; class MsgConfigureChannelizer : public Message { MESSAGE_CLASS_DECLARATION public: int getSampleRate() const { return m_sampleRate; } int getCenterFrequency() const { return m_centerFrequency; } static MsgConfigureChannelizer* create(int sampleRate, int centerFrequency) { return new MsgConfigureChannelizer(sampleRate, centerFrequency); } private: int m_sampleRate; int m_centerFrequency; MsgConfigureChannelizer(int sampleRate, int centerFrequency) : Message(), m_sampleRate(sampleRate), m_centerFrequency(centerFrequency) { } }; class MsgReportChannelSampleRateChanged : public Message { MESSAGE_CLASS_DECLARATION public: static MsgReportChannelSampleRateChanged* create() { return new MsgReportChannelSampleRateChanged(); } private: MsgReportChannelSampleRateChanged() : Message() { } }; ChannelAnalyzerNG(DeviceSourceAPI *deviceAPI); virtual ~ChannelAnalyzerNG(); virtual void destroy() { delete this; } void setSampleSink(BasebandSampleSink* sampleSink) { m_sampleSink = sampleSink; } void configure(MessageQueue* messageQueue, int channelSampleRate, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb, bool pll, bool fll, unsigned int pllPskOrder); DownChannelizer *getChannelizer() { return m_channelizer; } int getInputSampleRate() const { return m_inputSampleRate; } int getChannelSampleRate() const { return m_settings.m_downSample ? m_settings.m_downSampleRate : m_inputSampleRate; } double getMagSq() const { return m_magsq; } bool isPllLocked() const { return m_settings.m_pll && m_pll.locked(); } Real getPllFrequency() const { return m_pll.getFreq(); } Real getPllDeltaPhase() const { return m_pll.getDeltaPhi(); } Real getPllPhase() const { return m_pll.getPhiHat(); } virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly); virtual void start(); virtual void stop(); virtual bool handleMessage(const Message& cmd); virtual void getIdentifier(QString& id) { id = objectName(); } virtual void getTitle(QString& title) { title = objectName(); } virtual qint64 getCenterFrequency() const { return m_settings.m_frequency; } virtual QByteArray serialize() const { return QByteArray(); } virtual bool deserialize(const QByteArray& data __attribute__((unused))) { return false; } static const QString m_channelIdURI; static const QString m_channelId; private: DeviceSourceAPI *m_deviceAPI; ThreadedBasebandSampleSink* m_threadedChannelizer; DownChannelizer* m_channelizer; ChannelAnalyzerNGSettings m_settings; int m_inputSampleRate; int m_inputFrequencyOffset; int m_undersampleCount; fftfilt::cmplx m_sum; bool m_usb; double m_magsq; bool m_useInterpolator; NCOF m_nco; PhaseLockComplex m_pll; FreqLockComplex m_fll; Interpolator m_interpolator; Real m_interpolatorDistance; Real m_interpolatorDistanceRemain; fftfilt* SSBFilter; fftfilt* DSBFilter; fftcorr* m_corr; BasebandSampleSink* m_sampleSink; SampleVector m_sampleBuffer; QMutex m_settingsMutex; // void apply(bool force = false); void applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force = false); void applySettings(const ChannelAnalyzerNGSettings& settings, bool force = false); void setFilters(int sampleRate, float bandwidth, float lowCutoff); void processOneSample(Complex& c, fftfilt::cmplx *sideband); inline void feedOneSample(const fftfilt::cmplx& s, const fftfilt::cmplx& pll) { switch (m_settings.m_inputType) { case ChannelAnalyzerNGSettings::InputPLL: { if (m_settings.m_ssb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(pll.imag()*SDR_RX_SCALEF, pll.real()*SDR_RX_SCALEF)); } else { m_sampleBuffer.push_back(Sample(pll.real()*SDR_RX_SCALEF, pll.imag()*SDR_RX_SCALEF)); } } break; case ChannelAnalyzerNGSettings::InputAutoCorr: { std::complex a = m_corr->run(s/(SDR_RX_SCALEF/768.0f), 0); if (m_settings.m_ssb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(a.imag(), a.real())); } else { m_sampleBuffer.push_back(Sample(a.real(), a.imag())); } } break; case ChannelAnalyzerNGSettings::InputSignal: default: { if (m_settings.m_ssb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(s.imag(), s.real())); } else { m_sampleBuffer.push_back(Sample(s.real(), s.imag())); } } break; } } }; #endif // INCLUDE_CHANALYZERNG_H