/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "nfmdemod.h" #include #include #include #include #include #include "audio/audiooutput.h" #include "dsp/pidcontroller.h" #include "dsp/dspengine.h" #include "nfmdemodgui.h" static const double afSqTones[2] = {1200.0, 8000.0}; // {1200.0, 8000.0}; MESSAGE_CLASS_DEFINITION(NFMDemod::MsgConfigureNFMDemod, Message) NFMDemod::NFMDemod() : m_ctcssIndex(0), m_sampleCount(0), m_squelchCount(0), m_squelchGate(2400), m_audioMute(false), m_squelchOpen(false), m_afSquelchOpen(false), m_magsq(0.0f), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_afSquelch(2, afSqTones), m_audioFifo(4, 48000), m_fmExcursion(2400), m_settingsMutex(QMutex::Recursive), m_AGC(40, 0), m_movingAverage(40, 0) { setObjectName("NFMDemod"); m_config.m_inputSampleRate = 96000; m_config.m_inputFrequencyOffset = 0; m_config.m_rfBandwidth = 12500; m_config.m_afBandwidth = 3000; m_config.m_fmDeviation = 2000; m_config.m_squelchGate = 5; // 10s of ms at 48000 Hz sample rate. Corresponds to 2400 for AGC attack m_config.m_deltaSquelch = false; m_config.m_squelch = -30.0; m_config.m_volume = 1.0; m_config.m_ctcssOn = false; m_config.m_audioMute = false; m_config.m_audioSampleRate = DSPEngine::instance()->getAudioSampleRate(); apply(); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_agcLevel = 1.0; m_AGC.resize(m_squelchGate, m_agcLevel); m_movingAverage.resize(32, 0); m_ctcssDetector.setCoefficients(3000, 6000.0); // 0.5s / 2 Hz resolution m_afSquelch.setCoefficients(24, 600, 48000.0, 200, 0); // 0.5ms test period, 300ms average span, 48kS/s SR, 100ms attack, no decay DSPEngine::instance()->addAudioSink(&m_audioFifo); } NFMDemod::~NFMDemod() { DSPEngine::instance()->removeAudioSink(&m_audioFifo); } void NFMDemod::configure(MessageQueue* messageQueue, Real rfBandwidth, Real afBandwidth, int fmDeviation, Real volume, int squelchGate, bool deltaSquelch, Real squelch, bool ctcssOn, bool audioMute) { Message* cmd = MsgConfigureNFMDemod::create(rfBandwidth, afBandwidth, fmDeviation, volume, squelchGate, deltaSquelch, squelch, ctcssOn, audioMute); messageQueue->push(cmd); } float arctan2(Real y, Real x) { Real coeff_1 = M_PI / 4; Real coeff_2 = 3 * coeff_1; Real abs_y = fabs(y) + 1e-10; // kludge to prevent 0/0 condition Real angle; if( x>= 0) { Real r = (x - abs_y) / (x + abs_y); angle = coeff_1 - coeff_1 * r; } else { Real r = (x + abs_y) / (abs_y - x); angle = coeff_2 - coeff_1 * r; } if(y < 0) return(-angle); else return(angle); } Real angleDist(Real a, Real b) { Real dist = b - a; while(dist <= M_PI) dist += 2 * M_PI; while(dist >= M_PI) dist -= 2 * M_PI; return dist; } void NFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst) { Complex ci; m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { //Complex c(it->real() / 32768.0f, it->imag() / 32768.0f); Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { qint16 sample; //m_AGC.feed(ci); //double magsqRaw = m_AGC.getMagSq(); double magsqRaw; // = ci.real()*ci.real() + c.imag()*c.imag(); Real deviation; Real demod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation); Real magsq = magsqRaw / (1<<30); m_movingAverage.feed(magsq); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; //m_m2Sample = m_m1Sample; //m_m1Sample = ci; m_sampleCount++; // AF processing if (m_running.m_deltaSquelch) { if (m_afSquelch.analyze(demod)) { m_afSquelchOpen = m_afSquelch.evaluate() ? m_squelchGate + 480 : 0; } if (m_afSquelchOpen) { if (m_squelchCount < m_squelchGate + 480) { m_squelchCount++; } } else { if (m_squelchCount > 0) { m_squelchCount--; } } } else { if (m_movingAverage.average() < m_squelchLevel) { if (m_squelchCount > 0) { m_squelchCount--; } } else { if (m_squelchCount < m_squelchGate + 480) { m_squelchCount++; } } } // if ( (m_running.m_deltaSquelch && ((deviation > m_squelchLevel) || (deviation < -m_squelchLevel))) || // (!m_running.m_deltaSquelch && (m_movingAverage.average() < m_squelchLevel)) ) // { // if (m_squelchCount > 0) // { // m_squelchCount--; // } // } // else // { // if (m_squelchCount < m_squelchGate + 480) // { // m_squelchCount++; // } // } //squelchOpen = (getMag() > m_squelchLevel); m_squelchOpen = (m_squelchCount > m_squelchGate); /* if (m_afSquelch.analyze(demod)) { squelchOpen = m_afSquelch.evaluate(); }*/ if ((m_squelchOpen) && !m_running.m_audioMute) //if (m_AGC.getAverage() > m_squelchLevel) { if (m_running.m_ctcssOn) { Real ctcss_sample = m_lowpass.filter(demod); if ((m_sampleCount & 7) == 7) // decimate 48k -> 6k { if (m_ctcssDetector.analyze(&ctcss_sample)) { int maxToneIndex; if (m_ctcssDetector.getDetectedTone(maxToneIndex)) { if (maxToneIndex+1 != m_ctcssIndex) { m_nfmDemodGUI->setCtcssFreq(m_ctcssDetector.getToneSet()[maxToneIndex]); m_ctcssIndex = maxToneIndex+1; } } else { if (m_ctcssIndex != 0) { m_nfmDemodGUI->setCtcssFreq(0); m_ctcssIndex = 0; } } } } } if (m_running.m_ctcssOn && m_ctcssIndexSelected && (m_ctcssIndexSelected != m_ctcssIndex)) { sample = 0; } else { demod = m_bandpass.filter(demod); Real squelchFactor = smootherstep((Real) (m_squelchCount - m_squelchGate) / 480.0f); sample = demod * m_running.m_volume * squelchFactor; } } else { if (m_ctcssIndex != 0) { m_nfmDemodGUI->setCtcssFreq(0); m_ctcssIndex = 0; } sample = 0; } m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); if (res != m_audioBufferFill) { qDebug("NFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if (m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); if (res != m_audioBufferFill) { qDebug("NFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_settingsMutex.unlock(); } void NFMDemod::start() { m_audioFifo.clear(); m_phaseDiscri.reset(); apply(true); } void NFMDemod::stop() { } bool NFMDemod::handleMessage(const Message& cmd) { qDebug() << "NFMDemod::handleMessage"; if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; m_config.m_inputSampleRate = notif.getSampleRate(); m_config.m_inputFrequencyOffset = notif.getFrequencyOffset(); apply(); qDebug() << "NFMDemod::handleMessage: MsgChannelizerNotification: m_inputSampleRate: " << m_config.m_inputSampleRate << " m_inputFrequencyOffset: " << m_config.m_inputFrequencyOffset; return true; } else if (MsgConfigureNFMDemod::match(cmd)) { MsgConfigureNFMDemod& cfg = (MsgConfigureNFMDemod&) cmd; m_config.m_rfBandwidth = cfg.getRFBandwidth(); m_config.m_afBandwidth = cfg.getAFBandwidth(); m_config.m_fmDeviation = cfg.getFMDeviation(); m_config.m_volume = cfg.getVolume(); m_config.m_squelchGate = cfg.getSquelchGate(); m_config.m_deltaSquelch = cfg.getDeltaSquelch(); m_config.m_squelch = cfg.getSquelch(); m_config.m_ctcssOn = cfg.getCtcssOn(); m_config.m_audioMute = cfg.getAudioMute(); apply(); qDebug() << "NFMDemod::handleMessage: MsgConfigureNFMDemod: m_rfBandwidth: " << m_config.m_rfBandwidth << " m_afBandwidth: " << m_config.m_afBandwidth << " m_fmDeviation: " << m_config.m_fmDeviation << " m_volume: " << m_config.m_volume << " m_squelchGate: " << m_config.m_squelchGate << " m_deltaSquelch: " << m_config.m_deltaSquelch << " m_squelch: " << m_squelchLevel << " m_ctcssOn: " << m_config.m_ctcssOn << " m_audioMute: " << m_config.m_audioMute; return true; } else { return false; } } void NFMDemod::apply(bool force) { if ((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) || (m_config.m_inputSampleRate != m_running.m_inputSampleRate) || force) { m_nco.setFreq(-m_config.m_inputFrequencyOffset, m_config.m_inputSampleRate); } if ((m_config.m_inputSampleRate != m_running.m_inputSampleRate) || (m_config.m_rfBandwidth != m_running.m_rfBandwidth) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_config.m_inputSampleRate, m_config.m_rfBandwidth / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_audioSampleRate; m_phaseDiscri.setFMScaling((8.0f*m_config.m_rfBandwidth) / (float) m_config.m_fmDeviation); // integrate 4x factor m_settingsMutex.unlock(); } if ((m_config.m_fmDeviation != m_running.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling((8.0f*m_config.m_rfBandwidth) / (float) m_config.m_fmDeviation); // integrate 4x factor } if ((m_config.m_afBandwidth != m_running.m_afBandwidth) || (m_config.m_audioSampleRate != m_running.m_audioSampleRate) || force) { m_settingsMutex.lock(); m_lowpass.create(301, m_config.m_audioSampleRate, 250.0); m_bandpass.create(301, m_config.m_audioSampleRate, 300.0, m_config.m_afBandwidth); m_settingsMutex.unlock(); } if ((m_config.m_squelchGate != m_running.m_squelchGate) || force) { m_squelchGate = 480 * m_config.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter } if ((m_config.m_squelch != m_running.m_squelch) || (m_config.m_deltaSquelch != m_running.m_deltaSquelch) || force) { if (m_config.m_deltaSquelch) { // input is a value in negative millis m_squelchLevel = (- m_config.m_squelch) / 1000.0; m_afSquelch.setThreshold(m_squelchLevel); } else { // input is a value in centi-Bels m_squelchLevel = std::pow(10.0, m_config.m_squelch / 100.0); } //m_squelchLevel *= m_squelchLevel; //m_afSquelch.setThreshold(m_squelchLevel); } m_running.m_inputSampleRate = m_config.m_inputSampleRate; m_running.m_inputFrequencyOffset = m_config.m_inputFrequencyOffset; m_running.m_rfBandwidth = m_config.m_rfBandwidth; m_running.m_afBandwidth = m_config.m_afBandwidth; m_running.m_fmDeviation = m_config.m_fmDeviation; m_running.m_squelchGate = m_config.m_squelchGate; m_running.m_deltaSquelch = m_config.m_deltaSquelch; m_running.m_squelch = m_config.m_squelch; m_running.m_volume = m_config.m_volume; m_running.m_audioSampleRate = m_config.m_audioSampleRate; m_running.m_ctcssOn = m_config.m_ctcssOn; m_running.m_audioMute = m_config.m_audioMute; }