///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2019 F4EXB                                                      //
// written by Edouard Griffiths                                                  //
//                                                                               //
// This program is free software; you can redistribute it and/or modify          //
// it under the terms of the GNU General Public License as published by          //
// the Free Software Foundation as version 3 of the License, or                  //
// (at your option) any later version.                                           //
//                                                                               //
// This program is distributed in the hope that it will be useful,               //
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
// GNU General Public License V3 for more details.                               //
//                                                                               //
// You should have received a copy of the GNU General Public License             //
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
///////////////////////////////////////////////////////////////////////////////////


#include <QString>
#include <QDebug>
#include <algorithm>

#include "inthalfbandfilter.h"
#include "dspcommands.h"
#include "hbfilterchainconverter.h"
#include "upsamplechannelizer.h"

UpSampleChannelizer::UpSampleChannelizer(ChannelSampleSource* sampleSource) :
    m_filterChainSetMode(false),
    m_sampleSource(sampleSource),
    m_outputSampleRate(0),
    m_requestedInputSampleRate(0),
    m_requestedCenterFrequency(0),
    m_currentInputSampleRate(0),
    m_currentCenterFrequency(0)
{
}

UpSampleChannelizer::~UpSampleChannelizer()
{
    freeFilterChain();
}

void UpSampleChannelizer::pullOne(Sample& sample)
{
    if (m_sampleSource == nullptr)
    {
        m_sampleBuffer.clear();
        return;
    }

    unsigned int log2Interp = m_filterStages.size();

    if (log2Interp == 0) // optimization when no downsampling is done anyway
    {
        m_sampleSource->pullOne(sample);
    }
    else
    {
        FilterStages::iterator stage = m_filterStages.begin();
        std::vector<Sample>::iterator stageSample = m_stageSamples.begin();

        for (; stage != m_filterStages.end(); ++stage, ++stageSample)
        {
            if(stage == m_filterStages.end() - 1)
            {
                if ((*stage)->work(&m_sampleIn, &(*stageSample)))
                {
                    m_sampleSource->pullOne(m_sampleIn); // get new input sample
                }
            }
            else
            {
                if (!(*stage)->work(&(*(stageSample+1)), &(*stageSample)))
                {
                    break;
                }
            }
        }

        sample = *m_stageSamples.begin();
    }
}

void UpSampleChannelizer::pull(SampleVector::iterator begin, unsigned int nbSamples)
{
    if (m_sampleSource == nullptr)
    {
        m_sampleBuffer.clear();
        return;
    }

    unsigned int log2Interp = m_filterStages.size();

    if (log2Interp == 0) // optimization when no downsampling is done anyway
    {
        m_sampleSource->pull(begin, nbSamples);
    }
    else
    {
        std::for_each(
            begin,
            begin + nbSamples,
            [this](Sample& s) {
                pullOne(s);
            }
        );
    }
}

void UpSampleChannelizer::applyConfiguration()
{
    m_filterChainSetMode = false;

    if (m_outputSampleRate == 0)
    {
        qDebug() << "UpChannelizer::applyConfiguration: aborting (out=0):"
                << " out =" << m_outputSampleRate
                << ", req =" << m_requestedInputSampleRate
                << ", in =" << m_currentInputSampleRate
                << ", fc =" << m_currentCenterFrequency;
        return;
    }

    freeFilterChain();

    m_currentCenterFrequency = createFilterChain(
        m_outputSampleRate / -2, m_outputSampleRate / 2,
        m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2);

    m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size());

    qDebug() << "UpChannelizer::applyConfiguration:"
            << " out=" << m_outputSampleRate
            << ", req=" << m_requestedInputSampleRate
            << ", in=" << m_currentInputSampleRate
            << ", fc=" << m_currentCenterFrequency;
}

void UpSampleChannelizer::applyConfiguration(int requestedSampleRate, qint64 requestedCenterFrequency)
{
    m_requestedInputSampleRate = requestedSampleRate;
    m_requestedCenterFrequency = requestedCenterFrequency;
    applyConfiguration();
}

void UpSampleChannelizer::setOutputSampleRate(int outputSampleRate)
{
    m_outputSampleRate = outputSampleRate;
    applyConfiguration();
}

void UpSampleChannelizer::setInterpolation(unsigned int log2Interp, unsigned int filterChainHash)
{
    m_filterChainSetMode = true;
    std::vector<unsigned int> stageIndexes;
    m_currentCenterFrequency = m_outputSampleRate * HBFilterChainConverter::convertToIndexes(log2Interp, filterChainHash, stageIndexes);
    m_requestedCenterFrequency = m_currentCenterFrequency;

    freeFilterChain();
    m_currentCenterFrequency = m_outputSampleRate * setFilterChain(stageIndexes);
    m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size());
    m_requestedInputSampleRate = m_currentInputSampleRate;

	qDebug() << "UpChannelizer::applySetting in=" << m_outputSampleRate
			<< ", out=" << m_currentInputSampleRate
			<< ", fc=" << m_currentCenterFrequency;
}

#ifdef USE_SSE4_1
UpSampleChannelizer::FilterStage::FilterStage(Mode mode) :
    m_filter(new IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>),
    m_workFunction(0)
{
    switch(mode) {
        case ModeCenter:
            m_workFunction = &IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
            break;

        case ModeLowerHalf:
            m_workFunction = &IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
            break;

        case ModeUpperHalf:
            m_workFunction = &IntHalfbandFilterEO1<UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
            break;
    }
}
#else
UpSampleChannelizer::FilterStage::FilterStage(Mode mode) :
    m_filter(new IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>),
    m_workFunction(0)
{
    switch(mode) {
        case ModeCenter:
            m_workFunction = &IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
            break;

        case ModeLowerHalf:
            m_workFunction = &IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
            break;

        case ModeUpperHalf:
            m_workFunction = &IntHalfbandFilterDB<qint32, UPSAMPLECHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
            break;
    }
}
#endif

UpSampleChannelizer::FilterStage::~FilterStage()
{
    delete m_filter;
}

bool UpSampleChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const
{
    //qDebug("   testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd);
    if(sigEnd <= sigStart)
        return false;
    if(chanEnd <= chanStart)
        return false;
    return (sigStart <= chanStart) && (sigEnd >= chanEnd);
}

Real UpSampleChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
{
    Real sigBw = sigEnd - sigStart;
    Real rot = sigBw / 4;
    Sample s;

    qDebug() << "UpSampleChannelizer::createFilterChain: start:"
            << " sig: ["  << sigStart << ":" << sigEnd << "]"
            << " BW: " << sigBw
            << " chan: [" << chanStart << ":" << chanEnd << "]"
            << " rot: " << rot;

    // check if it fits into the left half
    if(signalContainsChannel(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd))
    {
        qDebug() << "UpSampleChannelizer::createFilterChain: take left half (rotate by +1/4 and decimate by 2):"
                << " [" << m_filterStages.size() << "]"
                << " sig: ["  << sigStart << ":" << sigStart + sigBw / 2.0 << "]";
        m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
        m_stageSamples.push_back(s);
        return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
    }

    // check if it fits into the right half
    if(signalContainsChannel(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd))
    {
        qDebug() << "UpSampleChannelizer::createFilterChain: take right half (rotate by -1/4 and decimate by 2):"
                << " [" << m_filterStages.size() << "]"
                << " sig: ["  << sigEnd - sigBw / 2.0f << ":" << sigEnd << "]";
        m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
        m_stageSamples.push_back(s);
        return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
    }

    // check if it fits into the center
    // Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
    if(signalContainsChannel(sigStart + rot, sigEnd - rot, chanStart, chanEnd))
    {
        qDebug() << "UpSampleChannelizer::createFilterChain: take center half (decimate by 2):"
                << " [" << m_filterStages.size() << "]"
                << " sig: ["  << sigStart + rot << ":" << sigEnd - rot << "]";
        m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
        m_stageSamples.push_back(s);
        // Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
        return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
    }

    Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);

    qDebug() << "UpSampleChannelizer::createFilterChain: complete:"
            << " #stages: " << m_filterStages.size()
            << " BW: "  << sigBw
            << " ofs: " << ofs;

    return ofs;
}

double UpSampleChannelizer::setFilterChain(const std::vector<unsigned int>& stageIndexes)
{
    // filters are described from lower to upper level but the chain is constructed the other way round
    std::vector<unsigned int>::const_reverse_iterator rit = stageIndexes.rbegin();
    double ofs = 0.0, ofs_stage = 0.25;
    Sample s;

    // Each index is a base 3 number with 0 = low, 1 = center, 2 = high
    // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting
    // algorithms will go from LSD to MSD. This explains the reverse order.
    for (; rit != stageIndexes.rend(); ++rit)
    {
        if (*rit == 0)
        {
            m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
            m_stageSamples.push_back(s);
            ofs -= ofs_stage;
        }
        else if (*rit == 1)
        {
            m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
            m_stageSamples.push_back(s);
        }
        else if (*rit == 2)
        {
            m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
            m_stageSamples.push_back(s);
            ofs += ofs_stage;
        }

        ofs_stage /= 2;
    }

    return ofs;
}

void UpSampleChannelizer::freeFilterChain()
{
    for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
        delete *it;
    m_filterStages.clear();
    m_stageSamples.clear();
}