/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // Copyright (C) 2023 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/dspengine.h" #include "util/db.h" #include "freqscanner.h" #include "freqscannersink.h" FreqScannerSink::FreqScannerSink(FreqScanner *ilsDemod) : m_freqScanner(ilsDemod), m_channel(nullptr), m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_scannerSampleRate(33320), m_centerFrequency(0), m_messageQueueToChannel(nullptr), m_fftSequence(-1), m_fft(nullptr), m_fftCounter(0) { applySettings(m_settings, QStringList(), true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, 16, 4, true); } FreqScannerSink::~FreqScannerSink() { } void FreqScannerSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance == 1.0f) // Don't call decimate, as we don't want filter applied if possible { processOneSample(c); } else if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void FreqScannerSink::processOneSample(Complex &ci) { ci /= SDR_RX_SCALEF; m_fft->in()[m_fftCounter] = ci; m_fftCounter++; if (m_fftCounter == m_fftSize) { // Apply windowing function m_fftWindow.apply(m_fft->in()); // Perform FFT m_fft->transform(); // Reorder (so negative frequencies are first) and average int halfSize = m_fftSize / 2; for (int i = 0; i < halfSize; i++) { m_fftAverage.storeAndGetAvg(m_magSq[i], magSq(i + halfSize), i); } for (int i = 0; i < halfSize; i++) { m_fftAverage.storeAndGetAvg(m_magSq[i + halfSize], magSq(i), i + halfSize); } if (m_fftAverage.nextAverage()) { // Send results to channel if (getMessageQueueToChannel()) { FreqScanner::MsgScanResult* msg = FreqScanner::MsgScanResult::create(m_fftStartTime); QList& results = msg->getScanResults(); for (int i = 0; i < m_settings.m_frequencies.size(); i++) { if (m_settings.m_enabled[i]) { qint64 frequency = m_settings.m_frequencies[i]; qint64 startFrequency = m_centerFrequency - m_scannerSampleRate / 2; qint64 diff = frequency - startFrequency; int binBW = m_settings.m_channelBandwidth / m_binsPerChannel; if ((diff < m_scannerSampleRate) && (diff >= 0)) { int bin = diff / binBW; // Calculate power at that frequency Real power; if (m_settings.m_measurement == FreqScannerSettings::PEAK) { power = peakPower(bin); } else { power = totalPower(bin); } FreqScanner::MsgScanResult::ScanResult result = {frequency, power}; results.append(result); } } } getMessageQueueToChannel()->push(msg); } m_averageCount = 0; m_fftStartTime = QDateTime::currentDateTime(); } m_fftCounter = 0; } } // Calculate total power in a channel containing the specified bin (i.e. sums adjacent bins in the same channel) Real FreqScannerSink::totalPower(int bin) const { // Skip bin between halfway between channels // Then skip first and last bins, to avoid spectral leakage (particularly at DC) int startBin = bin - m_binsPerChannel / 2 + 1 + 1; Real magSqSum = 0.0f; for (int i = 0; i < m_binsPerChannel - 2 - 1; i++) { int idx = startBin + i; if ((idx < 0) || (idx >= m_fftSize)) { continue; } magSqSum += m_magSq[idx]; } Real db = CalcDb::dbPower(magSqSum); return db; } // Calculate peak power in a channel containing the specified bin Real FreqScannerSink::peakPower(int bin) const { // Skip bin between halfway between channels // Then skip first and last bins, to avoid spectral leakage (particularly at DC) int startBin = bin - m_binsPerChannel/2 + 1 + 1; Real maxMagSq = m_magSq[startBin]; for (int i = 1; i < m_binsPerChannel - 2 - 1; i++) { int idx = startBin + i; if ((idx < 0) || (idx >= m_fftSize)) { continue; } maxMagSq = std::max(maxMagSq, m_magSq[idx]); } Real db = CalcDb::dbPower(maxMagSq); return db; } Real FreqScannerSink::magSq(int bin) const { Complex c = m_fft->out()[bin]; Real v = c.real() * c.real() + c.imag() * c.imag(); Real magsq = v / (m_fftSize * m_fftSize); return magsq; } void FreqScannerSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, int scannerSampleRate, int fftSize, int binsPerChannel, bool force) { qDebug() << "FreqScannerSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset << " scannerSampleRate: " << scannerSampleRate << " fftSize: " << fftSize << " binsPerChannel: " << binsPerChannel; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || (m_scannerSampleRate != scannerSampleRate) || force) { m_interpolator.create(16, channelSampleRate, scannerSampleRate / 2.0); // Highest cutoff, so we don't attentuate first/last channel m_interpolatorDistance = (Real) channelSampleRate / (Real)scannerSampleRate; m_interpolatorDistanceRemain = m_interpolatorDistance; } if ((m_fftSize != fftSize) || force) { FFTFactory* fftFactory = DSPEngine::instance()->getFFTFactory(); if (m_fftSequence >= 0) { fftFactory->releaseEngine(fftSize, false, m_fftSequence); } m_fftSequence = fftFactory->getEngine(fftSize, false, &m_fft); m_fftCounter = 0; m_fftStartTime = QDateTime::currentDateTime(); m_fftWindow.create(FFTWindow::Hanning, fftSize); int averages = m_settings.m_scanTime * scannerSampleRate / 2 / fftSize; m_fftAverage.resize(fftSize, averages); m_magSq.resize(fftSize); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; m_scannerSampleRate = scannerSampleRate; m_fftSize = fftSize; m_binsPerChannel = binsPerChannel; } void FreqScannerSink::applySettings(const FreqScannerSettings& settings, const QStringList& settingsKeys, bool force) { qDebug() << "FreqScannerSink::applySettings:" << settings.getDebugString(settingsKeys, force) << " force: " << force; if (settingsKeys.contains("scanTime") || force) { int averages = settings.m_scanTime * m_scannerSampleRate / 2 / m_fftSize; m_fftAverage.resize(m_fftSize, averages); } if (force) { m_settings = settings; } else { m_settings.applySettings(settingsKeys, settings); } }