/* emnr.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2015 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@wpratt.com */ #include #include "comm.hpp" #include "calculus.hpp" #include "emnr.hpp" #include "amd.hpp" #include "anr.hpp" #include "anf.hpp" #include "snba.hpp" #include "bandpass.hpp" #include "RXA.hpp" namespace WDSP { /******************************************************************************************************** * * * Special Functions * * * ********************************************************************************************************/ // MODIFIED BESSEL FUNCTIONS OF THE 0TH AND 1ST ORDERS, Polynomial Approximations // M. Abramowitz and I. Stegun, Eds., "Handbook of Mathematical Functions." Washington, DC: National // Bureau of Standards, 1964. // Shanjie Zhang and Jianming Jin, "Computation of Special Functions." New York, NY, John Wiley and Sons, // Inc., 1996. [Sample code given in FORTRAN] double EMNR::bessI0 (double x) { double res, p; if (x == 0.0) res = 1.0; else { if (x < 0.0) x = -x; if (x <= 3.75) { p = x / 3.75; p = p * p; res = ((((( 0.0045813 * p + 0.0360768) * p + 0.2659732) * p + 1.2067492) * p + 3.0899424) * p + 3.5156229) * p + 1.0; } else { p = 3.75 / x; res = exp (x) / sqrt (x) * (((((((( + 0.00392377 * p - 0.01647633) * p + 0.02635537) * p - 0.02057706) * p + 0.00916281) * p - 0.00157565) * p + 0.00225319) * p + 0.01328592) * p + 0.39894228); } } return res; } double EMNR::bessI1 (double x) { double res, p; if (x == 0.0) res = 0.0; else { if (x < 0.0) x = -x; if (x <= 3.75) { p = x / 3.75; p = p * p; res = x * (((((( 0.00032411 * p + 0.00301532) * p + 0.02658733) * p + 0.15084934) * p + 0.51498869) * p + 0.87890594) * p + 0.5); } else { p = 3.75 / x; res = exp (x) / sqrt (x) * (((((((( - 0.00420059 * p + 0.01787654) * p - 0.02895312) * p + 0.02282967) * p - 0.01031555) * p + 0.00163801) * p - 0.00362018) * p - 0.03988024) * p + 0.39894228); } } return res; } // EXPONENTIAL INTEGRAL, E1(x) // M. Abramowitz and I. Stegun, Eds., "Handbook of Mathematical Functions." Washington, DC: National // Bureau of Standards, 1964. // Shanjie Zhang and Jianming Jin, "Computation of Special Functions." New York, NY, John Wiley and Sons, // Inc., 1996. [Sample code given in FORTRAN] double EMNR::e1xb (double x) { double e1, ga, r, t, t0; int k, m; if (x == 0.0) e1 = 1.0e300; else if (x <= 1.0) { e1 = 1.0; r = 1.0; for (k = 1; k <= 25; k++) { r = -r * k * x / ((k + 1.0)*(k + 1.0)); e1 = e1 + r; if ( fabs (r) <= fabs (e1) * 1.0e-15 ) break; } ga = 0.5772156649015328; e1 = - ga - log (x) + x * e1; } else { m = 20 + (int)(80.0 / x); t0 = 0.0; for (k = m; k >= 1; k--) t0 = (float)k / (1.0 + k / (x + t0)); t = 1.0 / (x + t0); e1 = exp (- x) * t; } return e1; } /******************************************************************************************************** * * * Main Body of Code * * * ********************************************************************************************************/ void EMNR::calc_window (EMNR *a) { int i; float arg, sum, inv_coherent_gain; switch (a->wintype) { case 0: arg = 2.0 * PI / (float)a->fsize; sum = 0.0; for (i = 0; i < a->fsize; i++) { a->window[i] = sqrt (0.54 - 0.46 * cos((float)i * arg)); sum += a->window[i]; } inv_coherent_gain = (float)a->fsize / sum; for (i = 0; i < a->fsize; i++) a->window[i] *= inv_coherent_gain; break; } } void EMNR::interpM (double* res, double x, int nvals, double* xvals, double* yvals) { if (x <= xvals[0]) *res = yvals[0]; else if (x >= xvals[nvals - 1]) *res = yvals[nvals - 1]; else { int idx = 0; double xllow, xlhigh, frac; while (x >= xvals[idx]) idx++; xllow = log10 (xvals[idx - 1]); xlhigh = log10(xvals[idx]); frac = (log10 (x) - xllow) / (xlhigh - xllow); *res = yvals[idx - 1] + frac * (yvals[idx] - yvals[idx - 1]); } } void EMNR::calc_emnr(EMNR *a) { int i; double Dvals[18] = { 1.0, 2.0, 5.0, 8.0, 10.0, 15.0, 20.0, 30.0, 40.0, 60.0, 80.0, 120.0, 140.0, 160.0, 180.0, 220.0, 260.0, 300.0 }; double Mvals[18] = { 0.000, 0.260, 0.480, 0.580, 0.610, 0.668, 0.705, 0.762, 0.800, 0.841, 0.865, 0.890, 0.900, 0.910, 0.920, 0.930, 0.935, 0.940 }; // float Hvals[18] = { 0.000, 0.150, 0.480, 0.780, 0.980, 1.550, 2.000, 2.300, 2.520, // 3.100, 3.380, 4.150, 4.350, 4.250, 3.900, 4.100, 4.700, 5.000 }; a->incr = a->fsize / a->ovrlp; a->gain = a->ogain / a->fsize / (float)a->ovrlp; if (a->fsize > a->bsize) a->iasize = a->fsize; else a->iasize = a->bsize + a->fsize - a->incr; a->iainidx = 0; a->iaoutidx = 0; if (a->fsize > a->bsize) { if (a->bsize > a->incr) a->oasize = a->bsize; else a->oasize = a->incr; a->oainidx = (a->fsize - a->bsize - a->incr) % a->oasize; } else { a->oasize = a->bsize; a->oainidx = a->fsize - a->incr; } a->init_oainidx = a->oainidx; a->oaoutidx = 0; a->msize = a->fsize / 2 + 1; a->window = new float[a->fsize]; // (float *)malloc0(a->fsize * sizeof(float)); a->inaccum = new float[a->iasize]; // (float *)malloc0(a->iasize * sizeof(float)); a->forfftin = new float[a->fsize]; // (float *)malloc0(a->fsize * sizeof(float)); a->forfftout = new float[a->msize * 2]; // (float *)malloc0(a->msize * sizeof(complex)); a->mask = new double[a->msize]; // (float *)malloc0(a->msize * sizeof(float)); std::fill(a->mask, a->mask + a->msize, 1.0); a->revfftin = new float[a->msize * 2]; // (float *)malloc0(a->msize * sizeof(complex)); a->revfftout = new float[a->fsize]; // (float *)malloc0(a->fsize * sizeof(float)); a->save = new float*[a->ovrlp]; // (float **)malloc0(a->ovrlp * sizeof(float *)); for (i = 0; i < a->ovrlp; i++) a->save[i] = new float[a->fsize]; // (float *)malloc0(a->fsize * sizeof(float)); a->outaccum = new float[a->oasize]; // (float *)malloc0(a->oasize * sizeof(float)); a->nsamps = 0; a->saveidx = 0; a->Rfor = fftwf_plan_dft_r2c_1d(a->fsize, a->forfftin, (fftwf_complex *)a->forfftout, FFTW_ESTIMATE); a->Rrev = fftwf_plan_dft_c2r_1d(a->fsize, (fftwf_complex *)a->revfftin, a->revfftout, FFTW_ESTIMATE); calc_window(a); a->g.msize = a->msize; a->g.mask = a->mask; a->g.y = a->forfftout; a->g.lambda_y = new double[a->msize]; // (float *)malloc0(a->msize * sizeof(float)); a->g.lambda_d = new double[a->msize]; // (float *)malloc0(a->msize * sizeof(float)); a->g.prev_gamma = new double[a->msize]; // (float *)malloc0(a->msize * sizeof(float)); a->g.prev_mask = new double[a->msize]; // (float *)malloc0(a->msize * sizeof(float)); a->g.gf1p5 = sqrt(PI) / 2.0; { float tau = -128.0 / 8000.0 / log(0.98); a->g.alpha = exp(-a->incr / a->rate / tau); } a->g.eps_floor = std::numeric_limits::min(); a->g.gamma_max = 1000.0; a->g.q = 0.2; for (i = 0; i < a->g.msize; i++) { a->g.prev_mask[i] = 1.0; a->g.prev_gamma[i] = 1.0; } a->g.gmax = 10000.0; // a->g.GG = new double[241 * 241]; // (float *)malloc0(241 * 241 * sizeof(float)); a->g.GGS = new double[241 * 241]; // (float *)malloc0(241 * 241 * sizeof(float)); if ((a->g.fileb = fopen("calculus", "rb"))) { std::size_t lgg = fread(a->g.GG, sizeof(float), 241 * 241, a->g.fileb); if (lgg != 241 * 241) { fprintf(stderr, "GG file has an invalid size\n"); } std::size_t lggs =fread(a->g.GGS, sizeof(float), 241 * 241, a->g.fileb); if (lggs != 241 * 241) { fprintf(stderr, "GGS file has an invalid size\n"); } fclose(a->g.fileb); } else { std::copy(Calculus::GG, Calculus::GG + (241 * 241), a->g.GG); std::copy(Calculus::GGS, Calculus::GGS + (241 * 241), a->g.GGS); } // a->np.incr = a->incr; a->np.rate = a->rate; a->np.msize = a->msize; a->np.lambda_y = a->g.lambda_y; a->np.lambda_d = a->g.lambda_d; { float tau = -128.0 / 8000.0 / log(0.7); a->np.alphaCsmooth = exp(-a->np.incr / a->np.rate / tau); } { float tau = -128.0 / 8000.0 / log(0.96); a->np.alphaMax = exp(-a->np.incr / a->np.rate / tau); } { float tau = -128.0 / 8000.0 / log(0.7); a->np.alphaCmin = exp(-a->np.incr / a->np.rate / tau); } { float tau = -128.0 / 8000.0 / log(0.3); a->np.alphaMin_max_value = exp(-a->np.incr / a->np.rate / tau); } a->np.snrq = -a->np.incr / (0.064 * a->np.rate); { float tau = -128.0 / 8000.0 / log(0.8); a->np.betamax = exp(-a->np.incr / a->np.rate / tau); } a->np.invQeqMax = 0.5; a->np.av = 2.12; a->np.Dtime = 8.0 * 12.0 * 128.0 / 8000.0; a->np.U = 8; a->np.V = (int)(0.5 + (a->np.Dtime * a->np.rate / (a->np.U * a->np.incr))); if (a->np.V < 4) a->np.V = 4; if ((a->np.U = (int)(0.5 + (a->np.Dtime * a->np.rate / (a->np.V * a->np.incr)))) < 1) a->np.U = 1; a->np.D = a->np.U * a->np.V; interpM(&a->np.MofD, a->np.D, 18, Dvals, Mvals); interpM(&a->np.MofV, a->np.V, 18, Dvals, Mvals); a->np.invQbar_points[0] = 0.03; a->np.invQbar_points[1] = 0.05; a->np.invQbar_points[2] = 0.06; a->np.invQbar_points[3] = 1.0e300; { float db; db = 10.0 * log10(8.0) / (12.0 * 128 / 8000); a->np.nsmax[0] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate); db = 10.0 * log10(4.0) / (12.0 * 128 / 8000); a->np.nsmax[1] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate); db = 10.0 * log10(2.0) / (12.0 * 128 / 8000); a->np.nsmax[2] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate); db = 10.0 * log10(1.2) / (12.0 * 128 / 8000); a->np.nsmax[3] = pow(10.0, db / 10.0 * a->np.V * a->np.incr / a->np.rate); } a->np.p = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.alphaOptHat = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.alphaHat = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.sigma2N = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.pbar = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.p2bar = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.Qeq = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.bmin = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.bmin_sub = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.k_mod = new int[a->np.msize]; // (int *)malloc0(a->np.msize * sizeof(int)); a->np.actmin = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.actmin_sub = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.lmin_flag = new int[a->np.msize]; // (int *)malloc0(a->np.msize * sizeof(int)); a->np.pmin_u = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); a->np.actminbuff = new double*[a->np.U]; // (float**)malloc0(a->np.U * sizeof(float*)); for (i = 0; i < a->np.U; i++) a->np.actminbuff[i] = new double[a->np.msize]; // (float *)malloc0(a->np.msize * sizeof(float)); { int k, ku; a->np.alphaC = 1.0; a->np.subwc = a->np.V; a->np.amb_idx = 0; for (k = 0; k < a->np.msize; k++) a->np.lambda_y[k] = 0.5; std::copy(a->np.lambda_y, a->np.lambda_y + a->np.msize, a->np.p); std::copy(a->np.lambda_y, a->np.lambda_y + a->np.msize, a->np.sigma2N); std::copy(a->np.lambda_y, a->np.lambda_y + a->np.msize, a->np.pbar); std::copy(a->np.lambda_y, a->np.lambda_y + a->np.msize, a->np.pmin_u); for (k = 0; k < a->np.msize; k++) { a->np.p2bar[k] = a->np.lambda_y[k] * a->np.lambda_y[k]; a->np.actmin[k] = 1.0e300; a->np.actmin_sub[k] = 1.0e300; for (ku = 0; ku < a->np.U; ku++) a->np.actminbuff[ku][k] = 1.0e300; } std::fill(a->np.lmin_flag, a->np.lmin_flag + a->np.msize, 0); } a->nps.incr = a->incr; a->nps.rate = a->rate; a->nps.msize = a->msize; a->nps.lambda_y = a->g.lambda_y; a->nps.lambda_d = a->g.lambda_d; { float tau = -128.0 / 8000.0 / log(0.8); a->nps.alpha_pow = exp(-a->nps.incr / a->nps.rate / tau); } { float tau = -128.0 / 8000.0 / log(0.9); a->nps.alpha_Pbar = exp(-a->nps.incr / a->nps.rate / tau); } a->nps.epsH1 = pow(10.0, 15.0 / 10.0); a->nps.epsH1r = a->nps.epsH1 / (1.0 + a->nps.epsH1); a->nps.sigma2N = new double[a->nps.msize]; // (float *)malloc0(a->nps.msize * sizeof(float)); a->nps.PH1y = new double[a->nps.msize]; // (float *)malloc0(a->nps.msize * sizeof(float)); a->nps.Pbar = new double[a->nps.msize]; // (float *)malloc0(a->nps.msize * sizeof(float)); a->nps.EN2y = new double[a->nps.msize]; // (float *)malloc0(a->nps.msize * sizeof(float)); for (i = 0; i < a->nps.msize; i++) { a->nps.sigma2N[i] = 0.5; a->nps.Pbar[i] = 0.5; } a->ae.msize = a->msize; a->ae.lambda_y = a->g.lambda_y; a->ae.zetaThresh = 0.75; a->ae.psi = 10.0; a->ae.nmask = new double[a->ae.msize]; // (float *)malloc0(a->ae.msize * sizeof(float)); } void EMNR::decalc_emnr(EMNR *a) { int i; delete[] (a->ae.nmask); delete[] (a->nps.EN2y); delete[] (a->nps.Pbar); delete[] (a->nps.PH1y); delete[] (a->nps.sigma2N); for (i = 0; i < a->np.U; i++) delete[] (a->np.actminbuff[i]); delete[] (a->np.actminbuff); delete[] (a->np.pmin_u); delete[] (a->np.lmin_flag); delete[] (a->np.actmin_sub); delete[] (a->np.actmin); delete[] (a->np.k_mod); delete[] (a->np.bmin_sub); delete[] (a->np.bmin); delete[] (a->np.Qeq); delete[] (a->np.p2bar); delete[] (a->np.pbar); delete[] (a->np.sigma2N); delete[] (a->np.alphaHat); delete[] (a->np.alphaOptHat); delete[] (a->np.p); delete[] (a->g.GGS); delete[] (a->g.GG); delete[] (a->g.prev_mask); delete[] (a->g.prev_gamma); delete[] (a->g.lambda_d); delete[] (a->g.lambda_y); fftwf_destroy_plan(a->Rrev); fftwf_destroy_plan(a->Rfor); delete[] (a->outaccum); for (i = 0; i < a->ovrlp; i++) delete[] (a->save[i]); delete[] (a->save); delete[] (a->revfftout); delete[] (a->revfftin); delete[] (a->mask); delete[] (a->forfftout); delete[] (a->forfftin); delete[] (a->inaccum); delete[] (a->window); } EMNR* EMNR::create_emnr ( int run, int position, int size, float* in, float* out, int fsize, int ovrlp, int rate, int wintype, float gain, int gain_method, int npe_method, int ae_run ) { EMNR *a = new EMNR; a->run = run; a->position = position; a->bsize = size; a->in = in; a->out = out; a->fsize = fsize; a->ovrlp = ovrlp; a->rate = rate; a->wintype = wintype; a->ogain = gain; a->g.gain_method = gain_method; a->g.npe_method = npe_method; a->g.ae_run = ae_run; calc_emnr (a); return a; } void EMNR::flush_emnr (EMNR *a) { int i; std::fill(a->inaccum, a->inaccum + a->iasize, 0); for (i = 0; i < a->ovrlp; i++) std::fill(a->save[i], a->save[i] + a->fsize, 0); std::fill(a->outaccum, a->outaccum + a->oasize, 0); a->nsamps = 0; a->iainidx = 0; a->iaoutidx = 0; a->oainidx = a->init_oainidx; a->oaoutidx = 0; a->saveidx = 0; } void EMNR::destroy_emnr (EMNR *a) { decalc_emnr (a); delete[] (a); } void EMNR::LambdaD(EMNR *a) { int k; double f0, f1, f2, f3; double sum_prev_p; double sum_lambda_y; double alphaCtilda; double sum_prev_sigma2N; double alphaMin, SNR; double beta, varHat, invQeq; double invQbar; double bc; double QeqTilda, QeqTildaSub; double noise_slope_max; sum_prev_p = 0.0; sum_lambda_y = 0.0; sum_prev_sigma2N = 0.0; for (k = 0; k < a->np.msize; k++) { sum_prev_p += a->np.p[k]; sum_lambda_y += a->np.lambda_y[k]; sum_prev_sigma2N += a->np.sigma2N[k]; } for (k = 0; k < a->np.msize; k++) { f0 = a->np.p[k] / a->np.sigma2N[k] - 1.0; a->np.alphaOptHat[k] = 1.0 / (1.0 + f0 * f0); } SNR = sum_prev_p / sum_prev_sigma2N; alphaMin = std::min (a->np.alphaMin_max_value, pow (SNR, a->np.snrq)); for (k = 0; k < a->np.msize; k++) if (a->np.alphaOptHat[k] < alphaMin) a->np.alphaOptHat[k] = alphaMin; f1 = sum_prev_p / sum_lambda_y - 1.0; alphaCtilda = 1.0 / (1.0 + f1 * f1); a->np.alphaC = a->np.alphaCsmooth * a->np.alphaC + (1.0 - a->np.alphaCsmooth) * std::max (alphaCtilda, a->np.alphaCmin); f2 = a->np.alphaMax * a->np.alphaC; for (k = 0; k < a->np.msize; k++) a->np.alphaHat[k] = f2 * a->np.alphaOptHat[k]; for (k = 0; k < a->np.msize; k++) a->np.p[k] = a->np.alphaHat[k] * a->np.p[k] + (1.0 - a->np.alphaHat[k]) * a->np.lambda_y[k]; invQbar = 0.0; for (k = 0; k < a->np.msize; k++) { beta = std::min (a->np.betamax, a->np.alphaHat[k] * a->np.alphaHat[k]); a->np.pbar[k] = beta * a->np.pbar[k] + (1.0 - beta) * a->np.p[k]; a->np.p2bar[k] = beta * a->np.p2bar[k] + (1.0 - beta) * a->np.p[k] * a->np.p[k]; varHat = a->np.p2bar[k] - a->np.pbar[k] * a->np.pbar[k]; invQeq = varHat / (2.0 * a->np.sigma2N[k] * a->np.sigma2N[k]); if (invQeq > a->np.invQeqMax) invQeq = a->np.invQeqMax; a->np.Qeq[k] = 1.0 / invQeq; invQbar += invQeq; } invQbar /= (float)a->np.msize; bc = 1.0 + a->np.av * sqrt (invQbar); for (k = 0; k < a->np.msize; k++) { QeqTilda = (a->np.Qeq[k] - 2.0 * a->np.MofD) / (1.0 - a->np.MofD); QeqTildaSub = (a->np.Qeq[k] - 2.0 * a->np.MofV) / (1.0 - a->np.MofV); a->np.bmin[k] = 1.0 + 2.0 * (a->np.D - 1.0) / QeqTilda; a->np.bmin_sub[k] = 1.0 + 2.0 * (a->np.V - 1.0) / QeqTildaSub; } std::fill(a->np.k_mod, a->np.k_mod + a->np.msize, 0); for (k = 0; k < a->np.msize; k++) { f3 = a->np.p[k] * a->np.bmin[k] * bc; if (f3 < a->np.actmin[k]) { a->np.actmin[k] = f3; a->np.actmin_sub[k] = a->np.p[k] * a->np.bmin_sub[k] * bc; a->np.k_mod[k] = 1; } } if (a->np.subwc == a->np.V) { if (invQbar < a->np.invQbar_points[0]) noise_slope_max = a->np.nsmax[0]; else if (invQbar < a->np.invQbar_points[1]) noise_slope_max = a->np.nsmax[1]; else if (invQbar < a->np.invQbar_points[2]) noise_slope_max = a->np.nsmax[2]; else noise_slope_max = a->np.nsmax[3]; for (k = 0; k < a->np.msize; k++) { int ku; float min; if (a->np.k_mod[k]) a->np.lmin_flag[k] = 0; a->np.actminbuff[a->np.amb_idx][k] = a->np.actmin[k]; min = 1.0e300; for (ku = 0; ku < a->np.U; ku++) if (a->np.actminbuff[ku][k] < min) min = a->np.actminbuff[ku][k]; a->np.pmin_u[k] = min; if ((a->np.lmin_flag[k] == 1) && (a->np.actmin_sub[k] < noise_slope_max * a->np.pmin_u[k]) && (a->np.actmin_sub[k] > a->np.pmin_u[k])) { a->np.pmin_u[k] = a->np.actmin_sub[k]; for (ku = 0; ku < a->np.U; ku++) a->np.actminbuff[ku][k] = a->np.actmin_sub[k]; } a->np.lmin_flag[k] = 0; a->np.actmin[k] = 1.0e300; a->np.actmin_sub[k] = 1.0e300; } if (++a->np.amb_idx == a->np.U) a->np.amb_idx = 0; a->np.subwc = 1; } else { if (a->np.subwc > 1) { for (k = 0; k < a->np.msize; k++) { if (a->np.k_mod[k]) { a->np.lmin_flag[k] = 1; a->np.sigma2N[k] = std::min (a->np.actmin_sub[k], a->np.pmin_u[k]); a->np.pmin_u[k] = a->np.sigma2N[k]; } } } ++a->np.subwc; } std::copy(a->np.sigma2N, a->np.sigma2N + a->np.msize, a->np.lambda_d); } void EMNR::LambdaDs (EMNR *a) { int k; for (k = 0; k < a->nps.msize; k++) { a->nps.PH1y[k] = 1.0 / (1.0 + (1.0 + a->nps.epsH1) * exp (- a->nps.epsH1r * a->nps.lambda_y[k] / a->nps.sigma2N[k])); a->nps.Pbar[k] = a->nps.alpha_Pbar * a->nps.Pbar[k] + (1.0 - a->nps.alpha_Pbar) * a->nps.PH1y[k]; if (a->nps.Pbar[k] > 0.99) a->nps.PH1y[k] = std::min (a->nps.PH1y[k], 0.99); a->nps.EN2y[k] = (1.0 - a->nps.PH1y[k]) * a->nps.lambda_y[k] + a->nps.PH1y[k] * a->nps.sigma2N[k]; a->nps.sigma2N[k] = a->nps.alpha_pow * a->nps.sigma2N[k] + (1.0 - a->nps.alpha_pow) * a->nps.EN2y[k]; } std::copy(a->nps.sigma2N, a->nps.sigma2N + a->nps.msize, a->nps.lambda_d); } void EMNR::aepf(EMNR *a) { int k, m; int N, n; float sumPre, sumPost, zeta, zetaT; sumPre = 0.0; sumPost = 0.0; for (k = 0; k < a->ae.msize; k++) { sumPre += a->ae.lambda_y[k]; sumPost += a->mask[k] * a->mask[k] * a->ae.lambda_y[k]; } zeta = sumPost / sumPre; if (zeta >= a->ae.zetaThresh) zetaT = 1.0; else zetaT = zeta; if (zetaT == 1.0) N = 1; else N = 1 + 2 * (int)(0.5 + a->ae.psi * (1.0 - zetaT / a->ae.zetaThresh)); n = N / 2; for (k = n; k < (a->ae.msize - n); k++) { a->ae.nmask[k] = 0.0; for (m = k - n; m <= (k + n); m++) a->ae.nmask[k] += a->mask[m]; a->ae.nmask[k] /= (float)N; } std::copy(a->ae.nmask, a->ae.nmask + (a->ae.msize - 2 * n), a->mask + n); } double EMNR::getKey(double* type, double gamma, double xi) { int ngamma1, ngamma2, nxi1 = 0, nxi2 = 0; double tg, tx, dg, dx; const double dmin = 0.001; const double dmax = 1000.0; if (gamma <= dmin) { ngamma1 = ngamma2 = 0; tg = 0.0; } else if (gamma >= dmax) { ngamma1 = ngamma2 = 240; tg = 60.0; } else { tg = 10.0 * log10(gamma / dmin); ngamma1 = (int)(4.0 * tg); ngamma2 = ngamma1 + 1; } if (xi <= dmin) { nxi1 = nxi2 = 0; tx = 0.0; } else if (xi >= dmax) { nxi1 = nxi2 = 240; tx = 60.0; } else { tx = 10.0 * log10(xi / dmin); nxi1 = (int)(4.0 * tx); nxi2 = nxi1 + 1; } dg = (tg - 0.25 * ngamma1) / 0.25; dx = (tx - 0.25 * nxi1) / 0.25; return (1.0 - dg) * (1.0 - dx) * type[241 * nxi1 + ngamma1] + (1.0 - dg) * dx * type[241 * nxi2 + ngamma1] + dg * (1.0 - dx) * type[241 * nxi1 + ngamma2] + dg * dx * type[241 * nxi2 + ngamma2]; } void EMNR::calc_gain (EMNR *a) { int k; for (k = 0; k < a->g.msize; k++) { double y0 = a->g.y[2 * k + 0]; double y1 = a->g.y[2 * k + 1]; a->g.lambda_y[k] = y0 * y0 + y1 * y1; } switch (a->g.npe_method) { case 0: LambdaD(a); break; case 1: LambdaDs(a); break; } switch (a->g.gain_method) { case 0: { double gamma, eps_hat, v; for (k = 0; k < a->msize; k++) { gamma = std::min (a->g.lambda_y[k] / a->g.lambda_d[k], a->g.gamma_max); eps_hat = a->g.alpha * a->g.prev_mask[k] * a->g.prev_mask[k] * a->g.prev_gamma[k] + (1.0 - a->g.alpha) * std::max (gamma - 1.0f, a->g.eps_floor); v = (eps_hat / (1.0 + eps_hat)) * gamma; a->g.mask[k] = a->g.gf1p5 * sqrt (v) / gamma * exp (- 0.5 * v) * ((1.0 + v) * bessI0 (0.5 * v) + v * bessI1 (0.5 * v)); { double v2 = std::min (v, 700.0); double eta = a->g.mask[k] * a->g.mask[k] * a->g.lambda_y[k] / a->g.lambda_d[k]; double eps = eta / (1.0 - a->g.q); double witchHat = (1.0 - a->g.q) / a->g.q * exp (v2) / (1.0 + eps); a->g.mask[k] *= witchHat / (1.0 + witchHat); } if (a->g.mask[k] > a->g.gmax) a->g.mask[k] = a->g.gmax; if (a->g.mask[k] != a->g.mask[k]) a->g.mask[k] = 0.01; a->g.prev_gamma[k] = gamma; a->g.prev_mask[k] = a->g.mask[k]; } break; } case 1: { double gamma, eps_hat, v, ehr; for (k = 0; k < a->g.msize; k++) { gamma = std::min (a->g.lambda_y[k] / a->g.lambda_d[k], a->g.gamma_max); eps_hat = a->g.alpha * a->g.prev_mask[k] * a->g.prev_mask[k] * a->g.prev_gamma[k] + (1.0 - a->g.alpha) * std::max (gamma - 1.0f, a->g.eps_floor); ehr = eps_hat / (1.0 + eps_hat); v = ehr * gamma; if((a->g.mask[k] = ehr * exp (std::min (700.0, 0.5 * e1xb(v)))) > a->g.gmax) a->g.mask[k] = a->g.gmax; if (a->g.mask[k] != a->g.mask[k])a->g.mask[k] = 0.01; a->g.prev_gamma[k] = gamma; a->g.prev_mask[k] = a->g.mask[k]; } break; } case 2: { double gamma, eps_hat, eps_p; for (k = 0; k < a->msize; k++) { gamma = std::min(a->g.lambda_y[k] / a->g.lambda_d[k], a->g.gamma_max); eps_hat = a->g.alpha * a->g.prev_mask[k] * a->g.prev_mask[k] * a->g.prev_gamma[k] + (1.0 - a->g.alpha) * std::max(gamma - 1.0f, a->g.eps_floor); eps_p = eps_hat / (1.0 - a->g.q); a->g.mask[k] = getKey(a->g.GG, gamma, eps_hat) * getKey(a->g.GGS, gamma, eps_p); a->g.prev_gamma[k] = gamma; a->g.prev_mask[k] = a->g.mask[k]; } break; } } if (a->g.ae_run) aepf(a); } void EMNR::xemnr (EMNR *a, int pos) { if (a->run && pos == a->position) { int i, j, k, sbuff, sbegin; float g1; for (i = 0; i < 2 * a->bsize; i += 2) { a->inaccum[a->iainidx] = a->in[i]; a->iainidx = (a->iainidx + 1) % a->iasize; } a->nsamps += a->bsize; while (a->nsamps >= a->fsize) { for (i = 0, j = a->iaoutidx; i < a->fsize; i++, j = (j + 1) % a->iasize) a->forfftin[i] = a->window[i] * a->inaccum[j]; a->iaoutidx = (a->iaoutidx + a->incr) % a->iasize; a->nsamps -= a->incr; fftwf_execute (a->Rfor); calc_gain(a); for (i = 0; i < a->msize; i++) { g1 = a->gain * a->mask[i]; a->revfftin[2 * i + 0] = g1 * a->forfftout[2 * i + 0]; a->revfftin[2 * i + 1] = g1 * a->forfftout[2 * i + 1]; } fftwf_execute (a->Rrev); for (i = 0; i < a->fsize; i++) a->save[a->saveidx][i] = a->window[i] * a->revfftout[i]; for (i = a->ovrlp; i > 0; i--) { sbuff = (a->saveidx + i) % a->ovrlp; sbegin = a->incr * (a->ovrlp - i); for (j = sbegin, k = a->oainidx; j < a->incr + sbegin; j++, k = (k + 1) % a->oasize) { if ( i == a->ovrlp) a->outaccum[k] = a->save[sbuff][j]; else a->outaccum[k] += a->save[sbuff][j]; } } a->saveidx = (a->saveidx + 1) % a->ovrlp; a->oainidx = (a->oainidx + a->incr) % a->oasize; } for (i = 0; i < a->bsize; i++) { a->out[2 * i + 0] = a->outaccum[a->oaoutidx]; a->out[2 * i + 1] = 0.0; a->oaoutidx = (a->oaoutidx + 1) % a->oasize; } } else if (a->out != a->in) std::copy(a->in, a->in + a->bsize * 2, a->out); } void EMNR::setBuffers_emnr (EMNR *a, float* in, float* out) { a->in = in; a->out = out; } void EMNR::setSamplerate_emnr (EMNR *a, int rate) { decalc_emnr (a); a->rate = rate; calc_emnr (a); } void EMNR::setSize_emnr (EMNR *a, int size) { decalc_emnr (a); a->bsize = size; calc_emnr (a); } /******************************************************************************************************** * * * RXA Properties * * * ********************************************************************************************************/ void EMNR::SetEMNRRun (RXA& rxa, int run) { EMNR *a = rxa.emnr.p; if (a->run != run) { RXA::bp1Check ( rxa, rxa.amd.p->run, rxa.snba.p->run, run, rxa.anf.p->run, rxa.anr.p->run ); a->run = run; RXA::bp1Set (rxa); } } void EMNR::SetEMNRgainMethod (RXA& rxa, int method) { rxa.emnr.p->g.gain_method = method; } void EMNR::SetEMNRnpeMethod (RXA& rxa, int method) { rxa.emnr.p->g.npe_method = method; } void EMNR::SetEMNRaeRun (RXA& rxa, int run) { rxa.emnr.p->g.ae_run = run; } void EMNR::SetEMNRPosition (RXA& rxa, int position) { rxa.emnr.p->position = position; rxa.bp1.p->position = position; } void EMNR::SetEMNRaeZetaThresh (RXA& rxa, double zetathresh) { rxa.emnr.p->ae.zetaThresh = zetathresh; } void EMNR::SetEMNRaePsi (RXA& rxa, double psi) { rxa.emnr.p->ae.psi = psi; } } // namespace WDSP