/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "airspygui.h" #include "airspyinput.h" #include "util/simpleserializer.h" #include "dsp/dspcommands.h" #include "airspyserializer.h" #include "airspythread.h" MESSAGE_CLASS_DEFINITION(AirspyInput::MsgConfigureAirspy, Message) MESSAGE_CLASS_DEFINITION(AirspyInput::MsgReportAirspy, Message) AirspyInput::Settings::Settings() : m_centerFrequency(435000*1000), m_devSampleRateIndex(0), m_LOppmTenths(0), m_lnaGain(14), m_mixerGain(15), m_vgaGain(4), m_log2Decim(0), m_fcPos(FC_POS_CENTER), m_biasT(false) { } void AirspyInput::Settings::resetToDefaults() { m_centerFrequency = 435000*1000; m_devSampleRateIndex = 0; m_LOppmTenths = 0; m_lnaGain = 14; m_mixerGain = 15; m_vgaGain = 4; m_log2Decim = 0; m_fcPos = FC_POS_CENTER; m_biasT = false; } QByteArray AirspyInput::Settings::serialize() const { AirspySerializer::AirspyData data; data.m_data.m_frequency = m_centerFrequency; data.m_LOppmTenths = m_LOppmTenths; data.m_sampleRateIndex = m_devSampleRateIndex; data.m_log2Decim = m_log2Decim; data.m_fcPos = (qint32) m_fcPos; data.m_lnaGain = m_lnaGain; data.m_mixerGain = m_mixerGain; data.m_vgaGain = m_vgaGain; data.m_biasT = m_biasT; QByteArray byteArray; AirspySerializer::writeSerializedData(data, byteArray); return byteArray; } bool AirspyInput::Settings::deserialize(const QByteArray& serializedData) { AirspySerializer::AirspyData data; bool valid = AirspySerializer::readSerializedData(serializedData, data); m_centerFrequency = data.m_data.m_frequency; m_LOppmTenths = data.m_LOppmTenths; m_devSampleRateIndex = data.m_sampleRateIndex; m_log2Decim = data.m_log2Decim; m_fcPos = (fcPos_t) data.m_fcPos; m_lnaGain = data.m_lnaGain; m_mixerGain = data.m_mixerGain; m_vgaGain = data.m_vgaGain; m_biasT = data.m_biasT; return valid; } AirspyInput::AirspyInput() : m_settings(), m_dev(0), m_airspyThread(0), m_deviceDescription("Airspy") { m_sampleRates.push_back(10000000); m_sampleRates.push_back(2500000); } AirspyInput::~AirspyInput() { stop(); } bool AirspyInput::init(const Message& cmd) { return false; } bool AirspyInput::start(int device) { QMutexLocker mutexLocker(&m_mutex); airspy_error rc; rc = (airspy_error) airspy_init(); if (rc != AIRSPY_SUCCESS) { qCritical("AirspyInput::start: failed to initiate Airspy library %s", airspy_error_name(rc)); } if (m_dev != 0) { stop(); } if (!m_sampleFifo.setSize(1<<19)) { qCritical("AirspyInput::start: could not allocate SampleFifo"); return false; } if ((m_dev = open_airspy_from_sequence(device)) == 0) { qCritical("AirspyInput::start: could not open Airspy #%d", device); return false; } #ifdef LIBAIRSPY_DYN_RATES uint32_t nbSampleRates; uint32_t *sampleRates; airspy_get_samplerates(m_dev, &nbSampleRates, 0); sampleRates = new uint32_t[nbSampleRates]; airspy_get_samplerates(m_dev, sampleRates, nbSampleRates); if (nbSampleRates == 0) { qCritical("AirspyInput::start: could not obtain Airspy sample rates"); return false; } m_sampleRates.clear(); for (int i=0; ipush(message); rc = (airspy_error) airspy_set_sample_type(m_dev, AIRSPY_SAMPLE_INT16_IQ); if (rc != AIRSPY_SUCCESS) { qCritical("AirspyInput::start: could not set sample type to INT16_IQ"); return false; } if((m_airspyThread = new AirspyThread(m_dev, &m_sampleFifo)) == 0) { qFatal("AirspyInput::start: out of memory"); stop(); return false; } m_airspyThread->startWork(); mutexLocker.unlock(); applySettings(m_settings, true); qDebug("AirspyInput::startInput: started"); return true; } void AirspyInput::stop() { qDebug("AirspyInput::stop"); QMutexLocker mutexLocker(&m_mutex); if(m_airspyThread != 0) { m_airspyThread->stopWork(); delete m_airspyThread; m_airspyThread = 0; } if(m_dev != 0) { airspy_stop_rx(m_dev); airspy_close(m_dev); m_dev = 0; } airspy_exit(); } const QString& AirspyInput::getDeviceDescription() const { return m_deviceDescription; } int AirspyInput::getSampleRate() const { int rate = m_sampleRates[m_settings.m_devSampleRateIndex]; return (rate / (1<(freq_hz)); if (rc != AIRSPY_SUCCESS) { qWarning("AirspyInput::setCenterFrequency: could not frequency to %llu Hz", freq_hz); } else { qWarning("AirspyInput::setCenterFrequency: frequency set to %llu Hz", freq_hz); } } bool AirspyInput::applySettings(const Settings& settings, bool force) { QMutexLocker mutexLocker(&m_mutex); bool forwardChange = false; airspy_error rc; qDebug() << "AirspyInput::applySettings"; if ((m_settings.m_devSampleRateIndex != settings.m_devSampleRateIndex) || force) { forwardChange = true; if (settings.m_devSampleRateIndex < m_sampleRates.size()) { m_settings.m_devSampleRateIndex = settings.m_devSampleRateIndex; } else { m_settings.m_devSampleRateIndex = m_sampleRates.size() - 1; } if (m_dev != 0) { rc = (airspy_error) airspy_set_samplerate(m_dev, static_cast(m_settings.m_devSampleRateIndex)); if (rc != AIRSPY_SUCCESS) { qCritical("AirspyInput::applySettings: could not set sample rate index %u (%d S/s): %s", m_settings.m_devSampleRateIndex, m_sampleRates[m_settings.m_devSampleRateIndex], airspy_error_name(rc)); } else { qDebug("AirspyInput::applySettings: sample rate set to index: %u (%d S/s)", m_settings.m_devSampleRateIndex, m_sampleRates[m_settings.m_devSampleRateIndex]); m_airspyThread->setSamplerate(m_sampleRates[m_settings.m_devSampleRateIndex]); } } } if ((m_settings.m_log2Decim != settings.m_log2Decim) || force) { m_settings.m_log2Decim = settings.m_log2Decim; forwardChange = true; if(m_dev != 0) { m_airspyThread->setLog2Decimation(m_settings.m_log2Decim); qDebug() << "AirspyInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos); qDebug() << "AirspyInput: set fc pos (enum) to " << (int) m_settings.m_fcPos; } } qint64 deviceCenterFrequency = m_settings.m_centerFrequency; qint64 f_img = deviceCenterFrequency; quint32 devSampleRate = m_sampleRates[m_settings.m_devSampleRateIndex]; if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) || (m_settings.m_LOppmTenths != settings.m_LOppmTenths)) { m_settings.m_centerFrequency = settings.m_centerFrequency; m_settings.m_LOppmTenths = settings.m_LOppmTenths; if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == FC_POS_CENTER)) { deviceCenterFrequency = m_settings.m_centerFrequency; f_img = deviceCenterFrequency; } else { if (m_settings.m_fcPos == FC_POS_INFRA) { deviceCenterFrequency = m_settings.m_centerFrequency + (devSampleRate / 4); f_img = deviceCenterFrequency + devSampleRate/2; } else if (m_settings.m_fcPos == FC_POS_SUPRA) { deviceCenterFrequency = m_settings.m_centerFrequency - (devSampleRate / 4); f_img = deviceCenterFrequency - devSampleRate/2; } } if (m_dev != 0) { setCenterFrequency(deviceCenterFrequency); qDebug() << "AirspyInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz" << " device center freq: " << deviceCenterFrequency << " Hz" << " device sample rate: " << devSampleRate << "Hz" << " Actual sample rate: " << devSampleRate/(1<push(notif); } return true; } struct airspy_device *AirspyInput::open_airspy_from_sequence(int sequence) { airspy_read_partid_serialno_t read_partid_serialno; struct airspy_device *devinfo, *retdev = 0; uint32_t serial_msb = 0; uint32_t serial_lsb = 0; airspy_error rc; int i; for (int i = 0; i < AIRSPY_MAX_DEVICE; i++) { rc = (airspy_error) airspy_open(&devinfo); if (rc == AIRSPY_SUCCESS) { if (i == sequence) { return devinfo; } } else { break; } } return 0; }