/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB. // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "amdemod.h" #include #include #include #include #include "dsp/downchannelizer.h" #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/dspcommands.h" #include "device/devicesourceapi.h" MESSAGE_CLASS_DEFINITION(AMDemod::MsgConfigureAMDemod, Message) MESSAGE_CLASS_DEFINITION(AMDemod::MsgConfigureChannelizer, Message) const QString AMDemod::m_channelIdURI = "de.maintech.sdrangelove.channel.am"; const QString AMDemod::m_channelId = "AMDemod"; const int AMDemod::m_udpBlockSize = 512; AMDemod::AMDemod(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_inputSampleRate(48000), m_inputFrequencyOffset(0), m_running(false), m_squelchOpen(false), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_volumeAGC(0.003), m_audioFifo(48000), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_magsq = 0.0; DSPEngine::instance()->addAudioSink(&m_audioFifo); m_udpBufferAudio = new UDPSink(this, m_udpBlockSize, m_settings.m_udpPort); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); } AMDemod::~AMDemod() { DSPEngine::instance()->removeAudioSink(&m_audioFifo); delete m_udpBufferAudio; m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; } void AMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused))) { Complex ci; m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { processOneSample(ci); while (m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); } m_interpolatorDistanceRemain += m_interpolatorDistance; } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if (m_running && (m_audioBufferFill > 0)) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 10); if (res != m_audioBufferFill) { qDebug("AMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_settingsMutex.unlock(); } void AMDemod::start() { qDebug("AMDemod::start"); m_squelchCount = 0; m_audioFifo.clear(); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); m_running = true; } void AMDemod::stop() { qDebug("AMDemod::stop"); m_running = false; } bool AMDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "AMDemod::handleMessage: MsgChannelizerNotification:" << " inputSampleRate: " << notif.getSampleRate() << " inputFrequencyOffset: " << notif.getFrequencyOffset(); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "AMDemod::handleMessage: MsgConfigureChannelizer:" << " sampleRate: " << cfg.getSampleRate() << " inputFrequencyOffset: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureAMDemod::match(cmd)) { MsgConfigureAMDemod& cfg = (MsgConfigureAMDemod&) cmd; qDebug() << "AMDemod::handleMessage: MsgConfigureAMDemod"; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { return false; } } void AMDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "AMDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if ((m_inputFrequencyOffset != inputFrequencyOffset) || (m_inputSampleRate != inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((m_inputSampleRate != inputSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, m_settings.m_rfBandwidth / 2.2f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate; m_settingsMutex.unlock(); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void AMDemod::applySettings(const AMDemodSettings& settings, bool force) { qDebug() << "AMDemod::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_volume: " << settings.m_volume << " m_squelch: " << settings.m_squelch << " m_audioMute: " << settings.m_audioMute << " m_bandpassEnable: " << settings.m_bandpassEnable << " m_copyAudioToUDP: " << settings.m_copyAudioToUDP << " m_udpAddress: " << settings.m_udpAddress << " m_udpPort: " << settings.m_udpPort << " force: " << force; if((m_settings.m_rfBandwidth != settings.m_rfBandwidth) || (m_settings.m_audioSampleRate != settings.m_audioSampleRate) || (m_settings.m_bandpassEnable != settings.m_bandpassEnable) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, settings.m_rfBandwidth / 2.2f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) settings.m_audioSampleRate; m_bandpass.create(301, settings.m_audioSampleRate, 300.0, settings.m_rfBandwidth / 2.0f); m_settingsMutex.unlock(); } if ((m_settings.m_squelch != settings.m_squelch) || force) { m_squelchLevel = pow(10.0, settings.m_squelch / 10.0); } if ((m_settings.m_udpAddress != settings.m_udpAddress) || (m_settings.m_udpPort != settings.m_udpPort) || force) { m_udpBufferAudio->setAddress(const_cast(settings.m_udpAddress)); m_udpBufferAudio->setPort(settings.m_udpPort); } m_settings = settings; } QByteArray AMDemod::serialize() const { return m_settings.serialize(); } bool AMDemod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureAMDemod *msg = MsgConfigureAMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureAMDemod *msg = MsgConfigureAMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } }