/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // Copyright (C) 2023 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/dspengine.h" #include "dsp/scopevis.h" #include "util/stepfunctions.h" #include "util/db.h" #include "util/morse.h" #include "util/units.h" #include "maincore.h" #include "ilsdemod.h" #include "ilsdemodsink.h" ILSDemodSink::ILSDemodSink(ILSDemod *ilsDemod) : m_spectrumSink(nullptr), m_scopeSink(nullptr), m_ilsDemod(ilsDemod), m_channel(nullptr), m_channelSampleRate(ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE), m_channelFrequencyOffset(0), m_audioSampleRate(0), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_messageQueueToChannel(nullptr), m_fftSequence(-1), m_fft(nullptr), m_fftCounter(0), m_squelchLevel(0.001f), m_squelchCount(0), m_squelchOpen(false), m_squelchDelayLine(9600), m_volumeAGC(0.003), m_audioFifo(48000), m_sampleBufferIndex(0) { m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_magsq = 0.0; m_sampleBuffer.resize(m_sampleBufferSize); m_spectrumSampleBuffer.resize(m_sampleBufferSize); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory(); if (m_fftSequence >= 0) { fftFactory->releaseEngine(m_fftSize, false, m_fftSequence); } m_fftSequence = fftFactory->getEngine(m_fftSize, false, &m_fft); m_fftCounter = 0; m_fftWindow.create(FFTWindow::Flattop, m_fftSize); } ILSDemodSink::~ILSDemodSink() { } void ILSDemodSink::sampleToScope(Complex sample, Real demod) { Real r = std::real(sample) * SDR_RX_SCALEF; Real i = std::imag(sample) * SDR_RX_SCALEF; m_sampleBuffer[m_sampleBufferIndex] = Sample(r, i); m_spectrumSampleBuffer[m_sampleBufferIndex] = Sample(demod * SDR_RX_SCALEF, 0); m_sampleBufferIndex++; if (m_sampleBufferIndex == m_sampleBufferSize) { if (m_scopeSink) { std::vector vbegin; vbegin.push_back(m_sampleBuffer.begin()); m_scopeSink->feed(vbegin, m_sampleBufferSize); } if (m_spectrumSink) { m_spectrumSink->feed(m_spectrumSampleBuffer.begin(), m_spectrumSampleBuffer.end(), false); } m_sampleBufferIndex = 0; } } void ILSDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void ILSDemodSink::processOneSample(Complex &ci) { Complex ca; // Calculate average and peak levels for level meter double magsqRaw = ci.real()*ci.real() + ci.imag()*ci.imag();; Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; ci /= SDR_RX_SCALEF; // AM demodulation Complex demod = std::abs(ci); // Resample as audio if (m_audioInterpolatorDistance < 1.0f) // interpolate { while (!m_audioInterpolator.interpolate(&m_audioInterpolatorDistanceRemain, demod, &ca)) { processOneAudioSample(ca); m_audioInterpolatorDistanceRemain += m_audioInterpolatorDistance; } } else // decimate { if (m_audioInterpolator.decimate(&m_audioInterpolatorDistanceRemain, demod, &ca)) { processOneAudioSample(ca); m_audioInterpolatorDistanceRemain += m_audioInterpolatorDistance; } } // Decimate again for spectral analysis Complex demodDecim; if (m_decimator.decimate(demod, demodDecim)) { // Use FFT to calculate sidebands modulation depth m_fft->in()[m_fftCounter] = demodDecim; m_fftCounter++; if (m_fftCounter == m_fftSize) { calcDDM(); m_fftCounter = 0; // Send results to GUI if (getMessageQueueToChannel()) { Real modDepth90, modDepth150, sdm, ddm; if (m_settings.m_average) { modDepth90 = m_modDepth90Average.instantAverage(); modDepth150 = m_modDepth150Average.instantAverage(); sdm = m_sdmAverage.instantAverage(); ddm = m_ddmAverage.instantAverage(); } else { modDepth90 = m_modDepth90; modDepth150 = m_modDepth150; sdm = m_sdm; ddm = m_ddm; } Real angle; if (m_settings.m_mode == ILSDemodSettings::LOC) { // For localiser, angle depends on runway length // At ILS datum (over threshold) (or ILS point B for short runways (<=1200m), which is 1050m from threshold) // the displacement sensitivity is 0.00145 DDM/metre (3.1.3.7) // The points at which DDM is 0.155 (i.e a displacement of 0.155/0.00154=~105m) define the course sector (3.1.3.7.3 Note 1) // And this must be <= 6 degrees (typically between 3-6degrees) (3.1.3.7.1) // Localilzer to threshold distances (geometric angle) // EGKK 3150m (3.8deg), EGKB 1840m (6.5deg), EGLL 3960m (3.0deg), EGLC 1570m(27) 1510m(09) (7.6/8deg) EGJJ 1710m (7deg) // FAS data for EGJJ https://nats-uk.ead-it.com/cms-nats/export/sites/default/en/Publications/AIP/Current-AIRAC/graphics/196515.pdf // LTP (Landing threshold point) 491231.8010N 0021105.6645W = 49.20883361 -2.18490681 // FPAP 491224.8745N 0021228.7365W = 49.20690958 -2.20798236 // Length offset 136m (distance from near threshold??) // LTP-FPAP=1690m D=1690+305=1995 (GARP is 305m/1000ft from FPAP) // EGJJ angle for 1995m = 6deg angle = ddm / 0.155f * (m_settings.m_courseWidth / 2.0f); } else { // For glide slope, sector is 0.175 DDM = 0.7 degrees // Displacement sensitivity 0.0875 at 0.12*theta (0.12*3=0.36deg) (3.1.5.6.2) // GP coverage is from 0.45*theta to 1.75*theta (5.25-1.35=4.9deg for 3deg GP) angle = 0.12f * m_settings.m_glidePath * ddm / 0.0875f; } ILSDemod::MsgAngleEstimate *msg = ILSDemod::MsgAngleEstimate::create(m_powerCarrier, m_power90, m_power150, modDepth90, modDepth150, sdm, ddm, angle); getMessageQueueToChannel()->push(msg); } } // Select signals to feed to scope Complex scopeSample; switch (m_settings.m_scopeCh1) { case 0: scopeSample.real(ci.real()); break; case 1: scopeSample.real(ci.imag()); break; case 2: scopeSample.real(demod.real()); break; } switch (m_settings.m_scopeCh2) { case 0: scopeSample.imag(ci.real()); break; case 1: scopeSample.imag(ci.imag()); break; case 2: scopeSample.imag(demod.real()); break; } sampleToScope(scopeSample, demod.real()); } } void ILSDemodSink::processOneAudioSample(Complex &ci) { Real re = ci.real(); Real im = ci.imag(); Real magsq = re*re + im*im; m_audioMovingAverage(magsq); double magsqAvg = m_movingAverage.asDouble(); m_squelchDelayLine.write(magsq); if (magsqAvg < m_squelchLevel) { if (m_squelchCount > 0) { m_squelchCount--; } } else { if (m_squelchCount < (unsigned int)m_audioSampleRate / 10) { m_squelchCount++; } } qint16 sample; m_squelchOpen = (m_squelchCount >= (unsigned int)m_audioSampleRate / 20); if (m_squelchOpen && !m_settings.m_audioMute) { Real demod; { demod = sqrt(m_squelchDelayLine.readBack(m_audioSampleRate/20)); m_volumeAGC.feed(demod); demod = (demod - m_volumeAGC.getValue()) / m_volumeAGC.getValue(); } demod = m_bandpass.filter(demod); Real attack = (m_squelchCount - 0.05f * m_audioSampleRate) / (0.05f * m_audioSampleRate); sample = demod * StepFunctions::smootherstep(attack) * (m_audioSampleRate/24) * m_settings.m_volume; } else { sample = 0; } m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { std::size_t res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], std::min(m_audioBufferFill, m_audioBuffer.size())); if (res != m_audioBufferFill) { qDebug("ILSDemodSink::processOneAudioSample: %lu/%lu audio samples written", res, m_audioBufferFill); m_audioFifo.clear(); } m_audioBufferFill = 0; } m_morseDemod.processOneSample(ci); } Real ILSDemodSink::magSq(int bin) const { Complex c = m_fft->out()[bin]; Real v = c.real() * c.real() + c.imag() * c.imag(); Real magsq = v / (m_fftSize * m_fftSize); return magsq; } // Calculate the difference in the depth of modulation (DDM) void ILSDemodSink::calcDDM() { // 3.1.3.5.3 - the modulating tones shall be 90 Hz and 150 Hz within plus or minus 2.5 per cent // At 88/92Hz, some energy is lost in adjacent bin, so we use flat top windowing for accurate // amplitude measurement, which is what is needed for calculating depth of modulation m_fftWindow.apply(m_fft->in()); // Perform FFT m_fft->transform(); // Convert bin to frequency offset double frequencyResolution = ILSDemodSettings::ILSDEMOD_SPECTRUM_SAMPLE_RATE / (double)m_fftSize; int bin90 = 90.0 / frequencyResolution; int bin150 = 150.0 / frequencyResolution; double mag90, mag150; double magSqCarrier = magSq(0); double magCarrier = sqrt(magSqCarrier); // Add both sidebands mag90 = sqrt(magSq(bin90)) + sqrt(magSq(m_fftSize-bin90)); mag150 = sqrt(magSq(bin150)) + sqrt(magSq(m_fftSize-bin150)); // Calculate power in dB m_powerCarrier = CalcDb::dbPower(magSqCarrier); m_power90 = CalcDb::dbPower(mag90 * mag90); m_power150 = CalcDb::dbPower(mag150 * mag150); // Calculate modulation depth as % of carrier m_modDepth90 = mag90 / magCarrier * 100.0; m_modDepth150 = mag150 / magCarrier * 100.0; // Calculate modulation depth difference (https://www.youtube.com/watch?v=71iww_ERoYc) m_ddm = (m_modDepth90 - m_modDepth150) / 100.0; // Calculate sum of difference of modulation m_sdm = (m_modDepth90 + m_modDepth150) / 100.0; // Calculate moving averages m_modDepth90Average(m_modDepth90); m_modDepth150Average(m_modDepth150); m_sdmAverage(m_sdm); m_ddmAverage(m_ddm); } void ILSDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "ILSDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2); m_interpolatorDistance = (Real) channelSampleRate / (Real) ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void ILSDemodSink::applySettings(const ILSDemodSettings& settings, bool force) { qDebug() << "ILSDemodSink::applySettings:" << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_volume: " << settings.m_volume << " m_squelch: " << settings.m_squelch << " m_audioMute: " << settings.m_audioMute << " m_audioDeviceName: " << settings.m_audioDeviceName << " force: " << force; if ((m_settings.m_squelch != settings.m_squelch) || force) { m_squelchLevel = CalcDb::powerFromdB(settings.m_squelch); } if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2); m_interpolatorDistance = (Real) m_channelSampleRate / (Real) ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; } if ((settings.m_identThreshold != m_settings.m_identThreshold) || force) { m_morseDemod.applySettings(settings.m_identThreshold); } if (force) { m_modDepth90Average.reset(); m_modDepth150Average.reset(); m_ddmAverage.reset(); m_decimator.setLog2Decim(ILSDemodSettings::ILSDEMOD_SPECTRUM_DECIM_LOG2); } m_settings = settings; } void ILSDemodSink::applyAudioSampleRate(int sampleRate) { if (sampleRate < 0) { qWarning("ILSDemodSink::applyAudioSampleRate: invalid sample rate: %d", sampleRate); return; } qDebug("ILSDemodSink::applyAudioSampleRate: sampleRate: %d channelSampleRate: %d", sampleRate, ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE); if (sampleRate != m_audioSampleRate) { m_audioInterpolator.create(16, ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE, 3500.0f); m_audioInterpolatorDistanceRemain = 0; m_audioInterpolatorDistance = (Real) ILSDemodSettings::ILSDEMOD_CHANNEL_SAMPLE_RATE / (Real) sampleRate; m_bandpass.create(301, sampleRate, 300.0f, 3000.0f); //m_bandpass.printTaps("audio_bpf"); m_audioFifo.setSize(sampleRate); m_squelchDelayLine.resize(sampleRate/5); m_volumeAGC.resizeNew(sampleRate/10, 0.003f); m_morseDemod.applyChannelSettings(sampleRate); } m_audioSampleRate = sampleRate; }