/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "opencv2/imgproc/imgproc.hpp" #include "dsp/upchannelizer.h" #include "atvmod.h" MESSAGE_CLASS_DEFINITION(ATVMod::MsgConfigureATVMod, Message) MESSAGE_CLASS_DEFINITION(ATVMod::MsgConfigureImageFileName, Message) const float ATVMod::m_blackLevel = 0.3f; const float ATVMod::m_spanLevel = 0.7f; const int ATVMod::m_levelNbSamples = 10000; // every 10ms const int ATVMod::m_nbBars = 6; ATVMod::ATVMod() : m_modPhasor(0.0f), m_evenImage(true), m_tvSampleRate(1000000), m_settingsMutex(QMutex::Recursive), m_horizontalCount(0), m_lineCount(0), m_imageOK(false) { setObjectName("ATVMod"); m_config.m_outputSampleRate = 1000000; m_config.m_inputFrequencyOffset = 0; m_config.m_rfBandwidth = 1000000; m_config.m_atvModInput = ATVModInputHBars; m_config.m_atvStd = ATVStdPAL625; applyStandard(); m_interpolatorDistanceRemain = 0.0f; m_interpolatorDistance = 1.0f; apply(true); m_movingAverage.resize(16, 0); } ATVMod::~ATVMod() { } void ATVMod::configure(MessageQueue* messageQueue, Real rfBandwidth, ATVStd atvStd, ATVModInput atvModInput, Real uniformLevel, ATVModulation atvModulation, bool channelMute) { Message* cmd = MsgConfigureATVMod::create(rfBandwidth, atvStd, atvModInput, uniformLevel, atvModulation); messageQueue->push(cmd); } void ATVMod::pullAudio(int nbSamples) { } void ATVMod::pull(Sample& sample) { Complex ci; m_settingsMutex.lock(); if (m_tvSampleRate == m_running.m_outputSampleRate) // no interpolation nor decimation { modulateSample(); pullFinalize(m_modSample, sample); } else { if (m_interpolatorDistance > 1.0f) // decimate { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; pullFinalize(ci, sample); } } void ATVMod::pullFinalize(Complex& ci, Sample& sample) { ci *= m_carrierNco.nextIQ(); // shift to carrier frequency m_settingsMutex.unlock(); Real magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); magsq /= (1<<30); m_movingAverage.feed(magsq); sample.m_real = (FixReal) ci.real(); sample.m_imag = (FixReal) ci.imag(); } void ATVMod::modulateSample() { Real t; pullVideo(t); calculateLevel(t); switch (m_running.m_atvModulation) { case ATVModulationFM: // FM half bandwidth deviation m_modPhasor += (t - 0.5f) * M_PI; if (m_modPhasor > 2.0f * M_PI) m_modPhasor -= 2.0f * M_PI; // limit growth if (m_modPhasor < 2.0f * M_PI) m_modPhasor += 2.0f * M_PI; // limit growth m_modSample.real(cos(m_modPhasor) * 29204.0f); // -1 dB m_modSample.imag(sin(m_modPhasor) * 29204.0f); break; case ATVModulationAM: // AM 90% default: m_modSample.real((t*1.8f + 0.1f) * 16384.0f); // modulate and scale zero frequency carrier m_modSample.imag(0.0f); } } void ATVMod::pullVideo(Real& sample) { if ((m_lineCount < 5 + m_nbBlankLines) || (m_lineCount > 621) || ((m_lineCount > 309) && (m_lineCount < 317 + m_nbBlankLines))) { pullVSyncLine(sample); } else { pullImageLine(sample); } if (m_horizontalCount < m_nbHorizPoints - 1) { m_horizontalCount++; } else { if (m_lineCount < m_nbLines - 1) { m_lineCount++; if (m_lineCount > (m_nbLines/2)) m_evenImage = !m_evenImage; } else { m_lineCount = 0; m_evenImage = !m_evenImage; } m_horizontalCount = 0; } } void ATVMod::calculateLevel(Real& sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { qreal rmsLevel = std::sqrt(m_levelSum / m_levelNbSamples); //qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel); emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples); m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void ATVMod::start() { qDebug() << "ATVMod::start: m_outputSampleRate: " << m_config.m_outputSampleRate << " m_inputFrequencyOffset: " << m_config.m_inputFrequencyOffset; } void ATVMod::stop() { } bool ATVMod::handleMessage(const Message& cmd) { if (UpChannelizer::MsgChannelizerNotification::match(cmd)) { UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd; m_config.m_outputSampleRate = notif.getSampleRate(); m_config.m_inputFrequencyOffset = notif.getFrequencyOffset(); apply(); qDebug() << "ATVMod::handleMessage: MsgChannelizerNotification:" << " m_outputSampleRate: " << m_config.m_outputSampleRate << " m_inputFrequencyOffset: " << m_config.m_inputFrequencyOffset; return true; } else if (MsgConfigureATVMod::match(cmd)) { MsgConfigureATVMod& cfg = (MsgConfigureATVMod&) cmd; m_config.m_rfBandwidth = cfg.getRFBandwidth(); m_config.m_atvModInput = cfg.getATVModInput(); m_config.m_atvStd = cfg.getATVStd(); m_config.m_uniformLevel = cfg.getUniformLevel(); m_config.m_atvModulation = cfg.getModulation(); apply(); qDebug() << "ATVMod::handleMessage: MsgConfigureATVMod:" << " m_rfBandwidth: " << m_config.m_rfBandwidth << " m_atvStd: " << (int) m_config.m_atvStd << " m_atvModInput: " << (int) m_config.m_atvModInput << " m_uniformLevel: " << m_config.m_uniformLevel << " m_atvModulation: " << (int) m_config.m_atvModulation; return true; } else if (MsgConfigureImageFileName::match(cmd)) { MsgConfigureImageFileName& conf = (MsgConfigureImageFileName&) cmd; // m_fileName = conf.getFileName(); // TODO // openFileStream(); return true; } else { return false; } } void ATVMod::apply(bool force) { if ((m_config.m_outputSampleRate != m_running.m_outputSampleRate) || (m_config.m_atvStd != m_running.m_atvStd) || (m_config.m_rfBandwidth != m_running.m_rfBandwidth) || force) { int rateUnits = getSampleRateUnits(m_config.m_atvStd); m_tvSampleRate = (m_config.m_outputSampleRate / rateUnits) * rateUnits; // make sure working sample rate is a multiple of rate units m_settingsMutex.lock(); if (m_tvSampleRate > 0) { m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_tvSampleRate / (Real) m_config.m_outputSampleRate; m_interpolator.create(48, m_tvSampleRate, m_config.m_rfBandwidth / 2.2, 3.0); } else { m_tvSampleRate = m_config.m_outputSampleRate; } applyStandard(); // set all timings m_settingsMutex.unlock(); } if ((m_config.m_inputFrequencyOffset != m_running.m_inputFrequencyOffset) || (m_config.m_outputSampleRate != m_running.m_outputSampleRate)) { m_settingsMutex.lock(); m_carrierNco.setFreq(m_config.m_inputFrequencyOffset, m_config.m_outputSampleRate); m_settingsMutex.unlock(); } m_running.m_outputSampleRate = m_config.m_outputSampleRate; m_running.m_inputFrequencyOffset = m_config.m_inputFrequencyOffset; m_running.m_rfBandwidth = m_config.m_rfBandwidth; m_running.m_atvModInput = m_config.m_atvModInput; m_running.m_atvStd = m_config.m_atvStd; m_running.m_uniformLevel = m_config.m_uniformLevel; m_running.m_atvModulation = m_config.m_atvModulation; } int ATVMod::getSampleRateUnits(ATVStd std) { switch(std) { case ATVStdPAL525: return 1008000; break; case ATVStdPAL625: default: return 1000000; // Exact MS/s - us } } void ATVMod::applyStandard() { int rateUnits = getSampleRateUnits(m_config.m_atvStd); m_pointsPerTU = m_tvSampleRate / rateUnits; // TV sample rate is already set at a multiple of rate units switch(m_config.m_atvStd) { case ATVStdPAL525: // Follows PAL-M standard m_pointsPerSync = (uint32_t) roundf(4.7f * m_pointsPerTU); // normal sync pulse (4.7/1.008 us) m_pointsPerBP = (uint32_t) roundf(4.7f * m_pointsPerTU); // back porch (4.7/1.008 us) m_pointsPerFP = (uint32_t) roundf(1.5f * m_pointsPerTU); // front porch (1.5/1.008 us) m_pointsPerFSync = (uint32_t) roundf(2.3f * m_pointsPerTU); // equalizing pulse (2.3/1.008 us) // what is left in a 64/1.008 us line for the image m_pointsPerImgLine = 64 * m_pointsPerTU - m_pointsPerSync - m_pointsPerBP - m_pointsPerFP; m_nbLines = 525; m_nbLines2 = 263; m_nbImageLines = 510; m_nbImageLines2 = 255; m_interlaced = true; m_nbHorizPoints = 64 * m_pointsPerTU; // full line m_nbSyncLinesH = 5; m_nbBlankLines = 15; // yields 480 lines (255 - 15) * 2 m_pointsPerHBar = m_pointsPerImgLine / m_nbBars; m_linesPerVBar = m_nbImageLines2 / m_nbBars; m_hBarIncrement = m_spanLevel / (float) m_nbBars; m_vBarIncrement = m_spanLevel / (float) m_nbBars; break; case ATVStdPAL625: // Follows PAL-B/G/H standard default: m_pointsPerSync = (uint32_t) roundf(4.7f * m_pointsPerTU); // normal sync pulse (4.7 us) m_pointsPerBP = (uint32_t) roundf(4.7f * m_pointsPerTU); // back porch (4.7 us) m_pointsPerFP = (uint32_t) roundf(1.5f * m_pointsPerTU); // front porch (1.5 us) m_pointsPerFSync = (uint32_t) roundf(2.3f * m_pointsPerTU); // equalizing pulse (2.3 us) // what is left in a 64 us line for the image m_pointsPerImgLine = 64 * m_pointsPerTU - m_pointsPerSync - m_pointsPerBP - m_pointsPerFP; m_nbLines = 625; m_nbLines2 = 313; m_nbImageLines = 610; m_nbImageLines2 = 305; m_interlaced = true; m_nbHorizPoints = 64 * m_pointsPerTU; // full line m_nbSyncLinesH = 5; m_nbBlankLines = 17; // yields 576 lines (305 - 17) * 2 m_pointsPerHBar = m_pointsPerImgLine / m_nbBars; m_linesPerVBar = m_nbImageLines2 / m_nbBars; m_hBarIncrement = m_spanLevel / (float) m_nbBars; m_vBarIncrement = m_spanLevel / (float) m_nbBars; } } void ATVMod::openImage(QString& fileName) { cv::Mat tmpImage = cv::imread(qPrintable(fileName), CV_LOAD_IMAGE_GRAYSCALE); m_imageOK = tmpImage.data != 0; if (m_imageOK) { float fy = (m_nbImageLines - 2*m_nbBlankLines) / (float) tmpImage.rows; float fx = m_pointsPerImgLine / (float) tmpImage.cols; cv::resize(tmpImage, m_image, cv::Size(), fx, fy); qDebug("ATVMod::openImage: %d x %d -> %d x %d", tmpImage.cols, tmpImage.rows, m_image.cols, m_image.rows); // later: image.at(49,39); } }