/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #ifndef INCLUDE_ATVDEMODSINK_H #define INCLUDE_ATVDEMODSINK_H #include #include #include #include "dsp/channelsamplesink.h" #include "dsp/basebandsamplesink.h" #include "dsp/nco.h" #include "dsp/interpolator.h" #include "dsp/fftfilt.h" #include "dsp/agc.h" #include "dsp/phaselock.h" #include "dsp/recursivefilters.h" #include "dsp/phasediscri.h" #include "audio/audiofifo.h" #include "util/movingaverage.h" #include "gui/tvscreenanalog.h" #include "atvdemodsettings.h" class ATVDemodSink : public ChannelSampleSink { public: ATVDemodSink(); ~ATVDemodSink(); virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end); void setScopeSink(BasebandSampleSink* scopeSink) { m_scopeSink = scopeSink; } void setTVScreen(TVScreenAnalog *tvScreen) { m_registeredTVScreen = tvScreen; } //!< set by the GUI double getMagSq() const { return m_magSqAverage; } //!< Beware this is scaled to 2^30 bool getBFOLocked(); void setVideoTabIndex(int videoTabIndex) { m_videoTabIndex = videoTabIndex; } void applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force = false); void applySettings(const ATVDemodSettings& settings, bool force = false); private: struct ATVConfigPrivate { int m_intTVSampleRate; int m_intNumberSamplePerLine; ATVConfigPrivate() : m_intTVSampleRate(0), m_intNumberSamplePerLine(0) {} }; /** * Exponential average using integers and alpha as the inverse of a power of two */ class AvgExpInt { public: AvgExpInt(int log2Alpha) : m_log2Alpha(log2Alpha), m_m1(0), m_start(true) {} void reset() { m_start = true; } int run(int m0) { if (m_start) { m_m1 = m0; m_start = false; return m0; } else { m_m1 = m0 + m_m1 - (m_m1>>m_log2Alpha); return m_m1>>m_log2Alpha; } } private: int m_log2Alpha; int m_m1; bool m_start; }; int m_channelSampleRate; int m_channelFrequencyOffset; int m_tvSampleRate; int m_samplesPerLine; //!< number of samples per complete line (includes sync signals) - adusted value ATVDemodSettings m_settings; int m_videoTabIndex; //*************** SCOPE *************** BasebandSampleSink* m_scopeSink; SampleVector m_scopeSampleBuffer; //*************** ATV PARAMETERS *************** TVScreenAnalog *m_registeredTVScreen; std::shared_ptr m_tvScreenData; //int m_intNumberSamplePerLine; int m_numberSamplesPerHTopNom; //!< number of samples per horizontal synchronization pulse (pulse in ultra-black) - nominal value int m_numberSamplesPerHTop; //!< number of samples per horizontal synchronization pulse (pulse in ultra-black) - adusted value int m_numberOfBlackLines; //!< this is the total number of lines not part of the image and is used for vertical screen size int m_firstVisibleLine; int m_fieldDetectStartPos; int m_fieldDetectEndPos; int m_vSyncDetectStartPos; int m_vSyncDetectEndPos; int m_vSyncDetectThreshold; int m_fieldDetectThreshold1; int m_fieldDetectThreshold2; int m_numberOfVSyncLines; int m_numberSamplesPerLineSignals; //!< number of samples in the non image part of the line (signals = front porch + pulse + back porch) int m_numberSamplesPerHSync; //!< number of samples per horizontal synchronization pattern (pulse + back porch) int m_numberSamplesHSyncCrop; //!< number of samples to crop from start of horizontal synchronization bool m_interleaved; //!< interleaved image //*************** PROCESSING *************** int m_fieldIndex; int m_synchroSamples; int m_fieldDetectSampleCount; int m_vSyncDetectSampleCount; float m_effMin; float m_effMax; float m_ampMin; float m_ampMax; float m_ampDelta; //!< calculated amplitude of HSync pulse (should be ~0.3f) float m_fltBufferI[6]; float m_fltBufferQ[6]; int m_colIndex; int m_sampleIndex; // assumed (averaged) sample offset from the start of horizontal sync pulse int m_sampleIndexDetected; // detected sample offset from the start of horizontal sync pulse int m_amSampleIndex; int m_rowIndex; int m_lineIndex; float m_hSyncShiftSum; int m_hSyncShiftCount; int m_hSyncErrorCount; float prevSample; int m_avgColIndex; SampleVector m_sampleBuffer; float m_sampleRangeCorrection; //*************** RF *************** MovingAverageUtil m_magSqAverage; MovingAverageUtilVar m_ampAverage; NCO m_nco; SimplePhaseLock m_bfoPLL; SecondOrderRecursiveFilter m_bfoFilter; // Interpolator group for decimation and/or double sideband RF filtering Interpolator m_interpolator; Real m_interpolatorDistance; Real m_interpolatorDistanceRemain; // Used for vestigial SSB with asymmetrical filtering (needs double sideband scheme) fftfilt* m_DSBFilter; Complex* m_DSBFilterBuffer; int m_DSBFilterBufferIndex; static const int m_ssbFftLen; // Used for FM PhaseDiscriminators m_objPhaseDiscri; //QElapsedTimer m_objTimer; void demod(Complex& c); void applyStandard(int sampleRate, const ATVDemodSettings& settings, float lineDuration); inline void processSample(float& sample, int& sampleVideo) { // Filling pixel on the current line - reference index 0 at start of sync pulse m_tvScreenData->setSampleValue(m_sampleIndex - m_numberSamplesPerHSync, sampleVideo); if (m_settings.m_hSync) { // Horizontal Synchro detection if ((prevSample >= m_settings.m_levelSynchroTop && sample < m_settings.m_levelSynchroTop) // horizontal synchro detected && (m_sampleIndexDetected > m_samplesPerLine - m_numberSamplesPerHTopNom)) { double sampleIndexDetectedFrac = (sample - m_settings.m_levelSynchroTop) / (prevSample - sample); double hSyncShift = -m_sampleIndex - sampleIndexDetectedFrac; if (hSyncShift > m_samplesPerLine / 2) hSyncShift -= m_samplesPerLine; else if (hSyncShift < -m_samplesPerLine / 2) hSyncShift += m_samplesPerLine; if (fabs(hSyncShift) > m_numberSamplesPerHTopNom) { m_hSyncErrorCount++; if (m_hSyncErrorCount >= 8) { // Fast sync: shift is too large, needs to be fixed ASAP m_sampleIndex = 0; m_hSyncShiftSum = 0.0; m_hSyncShiftCount = 0; m_hSyncErrorCount = 0; } } else { m_hSyncShiftSum += hSyncShift; m_hSyncShiftCount++; m_hSyncErrorCount = 0; } m_sampleIndexDetected = 0; } else m_sampleIndexDetected++; } else { m_hSyncShiftSum = 0.0f; m_hSyncShiftCount = 0; } m_sampleIndex++; if (m_settings.m_vSync) { if (m_sampleIndex > m_fieldDetectStartPos && m_sampleIndex < m_fieldDetectEndPos) m_fieldDetectSampleCount += sample < m_settings.m_levelSynchroTop; if (m_sampleIndex > m_vSyncDetectStartPos && m_sampleIndex < m_vSyncDetectEndPos) m_vSyncDetectSampleCount += sample < m_settings.m_levelSynchroTop; } // end of line if (m_sampleIndex >= m_samplesPerLine) { m_sampleIndex = 0; if (m_settings.m_atvStd == ATVDemodSettings::ATVStdHSkip) { processEOLHSkip(); } else { processEOLClassic(); } } prevSample = sample; } // Standard vertical sync inline void processEOLClassic() { m_lineIndex++; if (m_lineIndex == m_numberOfVSyncLines + 3 && m_fieldIndex == 0) { float shiftSamples = 0.0f; // Slow sync: slight adjustment is needed if (m_hSyncShiftCount != 0 && m_settings.m_hSync) { shiftSamples = m_hSyncShiftSum / m_hSyncShiftCount; m_sampleIndex = shiftSamples; m_hSyncShiftSum = 0.0f; m_hSyncShiftCount = 0; m_hSyncErrorCount = 0; } m_registeredTVScreen->renderImage(); //m_registeredTVScreen->renderImage(0, // shiftSamples < -1.0f ? -1.0f : (shiftSamples > 1.0f ? 1.0f : shiftSamples)); } if (m_vSyncDetectSampleCount > m_vSyncDetectThreshold && (m_lineIndex < 3 || m_lineIndex > m_numberOfVSyncLines + 1) && m_settings.m_vSync) { if (m_interleaved) { if (m_fieldDetectSampleCount > m_fieldDetectThreshold1) m_fieldIndex = 0; else if (m_fieldDetectSampleCount < m_fieldDetectThreshold2) m_fieldIndex = 1; } m_lineIndex = 2; } m_fieldDetectSampleCount = 0; m_vSyncDetectSampleCount = 0; if (m_lineIndex > m_settings.m_nbLines / 2 + m_fieldIndex && m_interleaved) { m_lineIndex = 1; m_fieldIndex = 1 - m_fieldIndex; } else if (m_lineIndex > m_settings.m_nbLines && !m_interleaved) { m_lineIndex = 1; m_fieldIndex = 0; } int rowIndex = m_lineIndex - m_firstVisibleLine; if (m_interleaved) rowIndex = rowIndex * 2 - m_fieldIndex; // TODO: CHANGE float shiftSamples = 0.0f; if (m_hSyncShiftCount != 0) shiftSamples = m_hSyncShiftSum / m_hSyncShiftCount; m_tvScreenData->selectRow(rowIndex, shiftSamples < -1.0f ? -1.0f : (shiftSamples > 1.0f ? 1.0f : shiftSamples)); } // Vertical sync is obtained by skipping horizontal sync on the line that triggers vertical sync (new frame) inline void processEOLHSkip() { m_lineIndex++; m_rowIndex++; if ((m_sampleIndexDetected > (3*m_samplesPerLine) / 2) // Vertical sync is first horizontal sync after skip (count at least 1.5 line length) || (!m_settings.m_vSync && (m_lineIndex >= m_settings.m_nbLines))) // Vsync ignored and reached nominal number of lines per frame { float shiftSamples = 0.0f; // Slow sync: slight adjustment is needed if (m_hSyncShiftCount != 0 && m_settings.m_hSync) { shiftSamples = m_hSyncShiftSum / m_hSyncShiftCount; m_sampleIndex = shiftSamples; m_hSyncShiftSum = 0.0f; m_hSyncShiftCount = 0; m_hSyncErrorCount = 0; } m_registeredTVScreen->renderImage(); //m_registeredTVScreen->renderImage(0, // shiftSamples < -1.0f ? -1.0f : (shiftSamples > 1.0f ? 1.0f : shiftSamples)); m_lineIndex = 0; m_rowIndex = 0; } // TODO: CHANGE float shiftSamples = m_hSyncShiftSum / m_hSyncShiftCount; m_tvScreenData->setSampleValue(m_rowIndex, shiftSamples < -1.0f ? -1.0f : (shiftSamples > 1.0f ? 1.0f : shiftSamples)); } }; #endif // INCLUDE_ATVDEMODSINK_H