/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019-2020, 2022 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/dspengine.h" #include "dsp/fftfactory.h" #include "dsp/fftengine.h" #include "doa2corr.h" std::complex s2cNorm(const Sample& s) { float x = s.real() / SDR_RX_SCALEF; float y = s.imag() / SDR_RX_SCALEF; float m = sqrt(x*x + y*y); return std::complex{x/m, y/m}; } Sample sFirst(const Sample& a, const Sample& b) { (void) b; return a; } Sample sSecond(const Sample& a, const Sample& b) { (void) a; return b; } Sample sSecondInv(const Sample& a, const Sample& b) { (void) a; return Sample{-b.real(), -b.imag()}; } Sample invfft2s(const std::complex& a) { //!< Complex float to Sample for 1 side time correlation Sample s; s.setReal(a.real()/2.0f); s.setImag(a.imag()/2.0f); return s; } DOA2Correlator::DOA2Correlator(int fftSize) : m_corrType(DOA2Settings::CorrelationFFT), m_fftSize(fftSize) { setPhase(0); FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory(); m_window.create(FFTWindow::Function::Hanning, fftSize); for (int i = 0; i < 2; i++) { m_fftSequences[i] = fftFactory->getEngine(fftSize, false, &m_fft[i]); } m_invFFTSequence = fftFactory->getEngine(fftSize, true, &m_invFFT); m_dataj = new std::complex[2*fftSize]; // receives actual FFT result hence twice the data FFT size m_tcorr.resize(fftSize); m_xcorr.resize(fftSize); m_tcorrSize = fftSize; m_xcorrSize = fftSize; } DOA2Correlator::~DOA2Correlator() { FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory(); fftFactory->releaseEngine(m_fftSize, true, m_invFFTSequence); delete[] m_dataj; for (int i = 0; i < 2; i++) { fftFactory->releaseEngine(m_fftSize, false, m_fftSequences[i]); } } bool DOA2Correlator::performCorr( const SampleVector& data0, unsigned int size0, const SampleVector& data1, unsigned int size1 ) { bool results = false; if (m_phase == 0) { switch (m_corrType) { case DOA2Settings::Correlation0: results = performOpCorr(data0, size0, data1, size1, sFirst); break; case DOA2Settings::Correlation1: results = performOpCorr(data0, size0, data1, size1, sSecond); break; case DOA2Settings::CorrelationFFT: results = performFFTProd(data0, size0, data1, size1); break; default: break; } } else if ((m_phase == -180) || (m_phase == 180)) { if (m_corrType == DOA2Settings::CorrelationFFT) { if (size1 > m_data1p.size()) { m_data1p.resize(size1); } std::transform( data1.begin(), data1.begin() + size1, m_data1p.begin(), [](const Sample& s) -> Sample { return Sample{-s.real(), -s.imag()}; } ); } switch (m_corrType) { case DOA2Settings::Correlation0: results = performOpCorr(data0, size0, data1, size1, sFirst); break; case DOA2Settings::Correlation1: results = performOpCorr(data0, size0, data1, size1, sSecondInv); break; case DOA2Settings::CorrelationFFT: results = performFFTProd(data0, size0, m_data1p, size1); break; default: break; } } else { if (size1 > m_data1p.size()) { m_data1p.resize(size1); } std::transform( data1.begin(), data1.begin() + size1, m_data1p.begin(), [this](const Sample& s) -> Sample { Sample t; int64_t sx = s.real(); int64_t sy = s.imag(); int64_t x = sx*m_cos + sy*m_sin; int64_t y = sy*m_cos - sx*m_sin; t.setReal(x>>(SDR_RX_SAMP_SZ-1)); t.setImag(y>>(SDR_RX_SAMP_SZ-1)); return t; } ); switch (m_corrType) { case DOA2Settings::Correlation0: results = performOpCorr(data0, size0, m_data1p, size1, sFirst); break; case DOA2Settings::Correlation1: results = performOpCorr(data0, size0, m_data1p, size1, sSecond); break; case DOA2Settings::CorrelationFFT: results = performFFTProd(data0, size0, m_data1p, size1); break; default: break; } } return results; } bool DOA2Correlator::performOpCorr( const SampleVector& data0, unsigned int size0, const SampleVector& data1, unsigned int size1, Sample sampleOp(const Sample& a, const Sample& b) ) { unsigned int size = std::min(size0, size1); adjustTCorrSize(size); adjustXCorrSize(size); std::transform( data0.begin(), data0.begin() + size, data1.begin(), m_tcorr.begin(), sampleOp ); m_processed = size; m_remaining[0] = size0 - size; m_remaining[1] = size1 - size; return true; } bool DOA2Correlator::performFFTProd( const SampleVector& data0, unsigned int size0, const SampleVector& data1, unsigned int size1 ) { unsigned int size = std::min(size0, size1); int nfft = 0; SampleVector::const_iterator begin0 = data0.begin(); SampleVector::const_iterator begin1 = data1.begin(); adjustTCorrSize(size); adjustXCorrSize(size); while (size >= m_fftSize) { // FFT[0] std::transform( begin0, begin0 + m_fftSize, m_fft[0]->in(), s2cNorm ); m_window.apply(m_fft[0]->in()); m_fft[0]->transform(); // FFT[1] std::transform( begin1, begin1 + m_fftSize, m_fft[1]->in(), s2cNorm ); m_window.apply(m_fft[1]->in()); m_fft[1]->transform(); // conjugate FFT[1] std::transform( m_fft[1]->out(), m_fft[1]->out() + m_fftSize, m_dataj, [](const std::complex& c) -> std::complex { return std::conj(c); } ); // product of FFT[1]* with FFT[0] and store in both results std::transform( m_fft[0]->out(), m_fft[0]->out() + m_fftSize, m_dataj, m_invFFT->in(), [this](std::complex& a, const std::complex& b) -> std::complex { return (a*b); } ); // copy to complex vector for DOA with re-orderong std::copy( m_invFFT->in(), m_invFFT->in() + m_fftSize/2, m_xcorr.begin() + nfft*m_fftSize + m_fftSize/2 ); std::copy( m_invFFT->in() + m_fftSize/2, m_invFFT->in() + m_fftSize, m_xcorr.begin() + nfft*m_fftSize ); // convert and scale to FFT size for scope time domain display std::transform( m_xcorr.begin() + nfft*m_fftSize, m_xcorr.begin() + nfft*m_fftSize + m_fftSize, m_tcorr.begin() + nfft*m_fftSize, [](const std::complex& a) -> Sample { Sample s; s.setReal(a.real()/2.0f); s.setImag(a.imag()/2.0f); return s; } ); // copy product to time domain - re-order, convert and scale to FFT size // std::transform( // m_invFFT->in(), // m_invFFT->in() + m_fftSize/2, // m_tcorr.begin() + nfft*m_fftSize + m_fftSize/2, // [](const std::complex& a) -> Sample { // Sample s; // s.setReal(a.real()/2.0f); // s.setImag(a.imag()/2.0f); // return s; // } // ); // std::transform( // m_invFFT->in() + m_fftSize/2, // m_invFFT->in() + m_fftSize, // m_tcorr.begin() + nfft*m_fftSize, // [](const std::complex& a) -> Sample { // Sample s; // s.setReal(a.real()/2.0f); // s.setImag(a.imag()/2.0f); // return s; // } // ); size -= m_fftSize; begin0 += m_fftSize; begin1 += m_fftSize; nfft++; } // update the samples counters m_processed = nfft*m_fftSize; m_remaining[0] = size0 - nfft*m_fftSize; m_remaining[1] = size1 - nfft*m_fftSize; return nfft > 0; } void DOA2Correlator::adjustTCorrSize(int size) { int nFFTSize = (size/m_fftSize)*m_fftSize; if (nFFTSize > m_tcorrSize) { m_tcorr.resize(nFFTSize); m_tcorrSize = nFFTSize; } } void DOA2Correlator::adjustXCorrSize(int size) { int nFFTSize = (size/m_fftSize)*m_fftSize; if (nFFTSize > m_xcorrSize) { m_xcorr.resize(nFFTSize); m_xcorrSize = nFFTSize; } } void DOA2Correlator::setPhase(int phase) { m_phase = phase; if (phase == 0) { m_sin = 0; m_cos = 1<<(SDR_RX_SAMP_SZ-1); } else if (phase == 90) { m_sin = 1<<(SDR_RX_SAMP_SZ-1); m_cos = 0; } else if (phase == -90) { m_sin = -(1<<(SDR_RX_SAMP_SZ-1)); m_cos = 0; } else if ((phase == -180) || (phase == 180)) { m_sin = 0; m_cos = -(1<<(SDR_RX_SAMP_SZ-1)); } else { m_phase = phase % 180; double d_sin = sin(M_PI*(m_phase/180.0)) * (1<<(SDR_RX_SAMP_SZ-1)); double d_cos = cos(M_PI*(m_phase/180.0)) * (1<<(SDR_RX_SAMP_SZ-1)); m_sin = d_sin; m_cos = d_cos; } }