///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include
#include
#include
#include
#include "util/simpleserializer.h"
#include "bladerfgui.h"
#include "bladerfinput.h"
#include "bladerfthread.h"
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgConfigureBladerf, Message)
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgReportBladerf, Message)
BladerfInput::Settings::Settings() :
m_lnaGain(0),
m_vga1(20),
m_vga2(9),
m_samplerate(3072000),
m_bandwidth(1500000),
m_log2Decim(0),
m_fcPos(FC_POS_INFRA),
m_xb200(false),
m_xb200Path(BLADERF_XB200_MIX),
m_xb200Filter(BLADERF_XB200_AUTO_1DB)
{
}
void BladerfInput::Settings::resetToDefaults()
{
m_lnaGain = 0;
m_vga1 = 20;
m_vga2 = 9;
m_samplerate = 3072000;
m_bandwidth = 1500000;
m_log2Decim = 0;
m_fcPos = FC_POS_INFRA;
m_xb200 = false;
m_xb200Path = BLADERF_XB200_MIX;
m_xb200Filter = BLADERF_XB200_AUTO_1DB;
}
QByteArray BladerfInput::Settings::serialize() const
{
SimpleSerializer s(1);
s.writeS32(1, m_lnaGain);
s.writeS32(2, m_vga1);
s.writeS32(3, m_vga2);
s.writeS32(4, m_samplerate);
s.writeU32(5, m_log2Decim);
s.writeBool(6, m_xb200);
s.writeS32(7, (int) m_xb200Path);
s.writeS32(8, (int) m_xb200Filter);
s.writeS32(9, m_bandwidth);
s.writeS32(10, (int) m_fcPos);
return s.final();
}
bool BladerfInput::Settings::deserialize(const QByteArray& data)
{
SimpleDeserializer d(data);
if(!d.isValid()) {
resetToDefaults();
return false;
}
if(d.getVersion() == 1) {
int intval;
d.readS32(1, &m_lnaGain, 0);
d.readS32(2, &m_vga1, 20);
d.readS32(3, &m_vga2, 9);
d.readS32(4, &m_samplerate, 0);
d.readU32(5, &m_log2Decim, 0);
d.readBool(6, &m_xb200);
d.readS32(7, &intval);
m_xb200Path = (bladerf_xb200_path) intval;
d.readS32(8, &intval);
m_xb200Filter = (bladerf_xb200_filter) intval;
d.readS32(9, &m_bandwidth, 0);
d.readS32(10, &intval, 0);
m_fcPos = (fcPos_t) intval;
return true;
} else {
resetToDefaults();
return false;
}
}
BladerfInput::BladerfInput(MessageQueue* msgQueueToGUI) :
SampleSource(msgQueueToGUI),
m_settings(),
m_dev(NULL),
m_bladerfThread(NULL),
m_deviceDescription()
{
}
BladerfInput::~BladerfInput()
{
stopInput();
}
bool BladerfInput::startInput(int device)
{
QMutexLocker mutexLocker(&m_mutex);
if(m_dev != NULL)
stopInput();
int res;
int fpga_loaded;
if(!m_sampleFifo.setSize(96000 * 4)) {
qCritical("Could not allocate SampleFifo");
return false;
}
if ((m_dev = open_bladerf_from_serial(0)) == NULL) // TODO: fix; Open first available device as there is no proper handling for multiple devices
{
qCritical("could not open BladeRF");
return false;
}
fpga_loaded = bladerf_is_fpga_configured(m_dev);
if (fpga_loaded < 0) {
qCritical("Failed to check FPGA state: %s",
bladerf_strerror(fpga_loaded));
return false;
} else if (fpga_loaded == 0) {
qCritical("The device's FPGA is not loaded.");
return false;
}
// TODO: adjust USB transfer data according to sample rate
if ((res = bladerf_sync_config(m_dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000)) < 0)
{
qCritical("bladerf_sync_config with return code %d", res);
goto failed;
}
if ((res = bladerf_enable_module(m_dev, BLADERF_MODULE_RX, true)) < 0)
{
qCritical("bladerf_enable_module with return code %d", res);
goto failed;
}
if((m_bladerfThread = new BladerfThread(m_dev, &m_sampleFifo)) == NULL) {
qFatal("out of memory");
goto failed;
}
m_bladerfThread->startWork();
mutexLocker.unlock();
applySettings(m_generalSettings, m_settings, true);
qDebug("bladerfInput: start");
//MsgReportBladerf::create(m_gains)->submit(m_guiMessageQueue); Pass anything here
return true;
failed:
stopInput();
return false;
}
void BladerfInput::stopInput()
{
QMutexLocker mutexLocker(&m_mutex);
if(m_bladerfThread != NULL) {
m_bladerfThread->stopWork();
delete m_bladerfThread;
m_bladerfThread = NULL;
}
if(m_dev != NULL) {
bladerf_close(m_dev);
m_dev = NULL;
}
m_deviceDescription.clear();
}
const QString& BladerfInput::getDeviceDescription() const
{
return m_deviceDescription;
}
int BladerfInput::getSampleRate() const
{
int rate = m_settings.m_samplerate;
return (rate / (1<getGeneralSettings(), conf->getSettings(), false))
qDebug("BladeRF config error");
message->completed();
return true;
} else {
return false;
}
}
bool BladerfInput::applySettings(const GeneralSettings& generalSettings, const Settings& settings, bool force)
{
QMutexLocker mutexLocker(&m_mutex);
if((m_settings.m_lnaGain != settings.m_lnaGain) || force) {
m_settings.m_lnaGain = settings.m_lnaGain;
if(m_dev != NULL) {
if(bladerf_set_lna_gain(m_dev, getLnaGain(m_settings.m_lnaGain)) != 0) {
qDebug("bladerf_set_lna_gain() failed");
} else {
std::cerr << "BladerfInput: LNA gain set to " << getLnaGain(m_settings.m_lnaGain) << std::endl;
}
}
}
if((m_settings.m_vga1 != settings.m_vga1) || force) {
m_settings.m_vga1 = settings.m_vga1;
if(m_dev != NULL) {
if(bladerf_set_rxvga1(m_dev, m_settings.m_vga1) != 0) {
qDebug("bladerf_set_rxvga1() failed");
} else {
std::cerr << "BladerfInput: VGA1 gain set to " << m_settings.m_vga1 << std::endl;
}
}
}
if((m_settings.m_vga2 != settings.m_vga2) || force) {
m_settings.m_vga2 = settings.m_vga2;
if(m_dev != NULL) {
if(bladerf_set_rxvga2(m_dev, m_settings.m_vga2) != 0) {
qDebug("bladerf_set_rxvga2() failed");
} else {
std::cerr << "BladerfInput: VGA2 gain set to " << m_settings.m_vga2 << std::endl;
}
}
}
if((m_settings.m_xb200 != settings.m_xb200) || force) {
m_settings.m_xb200 = settings.m_xb200;
if(m_dev != NULL) {
if (m_settings.m_xb200) {
if (bladerf_expansion_attach(m_dev, BLADERF_XB_200) != 0) {
qDebug("bladerf_expansion_attach(xb200) failed");
} else {
std::cerr << "BladerfInput: Attach XB200" << std::endl;
}
} else {
if (bladerf_expansion_attach(m_dev, BLADERF_XB_NONE) != 0) {
qDebug("bladerf_expansion_attach(none) failed");
} else {
std::cerr << "BladerfInput: Detach XB200" << std::endl;
}
}
}
}
if((m_settings.m_xb200Path != settings.m_xb200Path) || force) {
m_settings.m_xb200Path = settings.m_xb200Path;
if(m_dev != NULL) {
if(bladerf_xb200_set_path(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Path) != 0) {
qDebug("bladerf_xb200_set_path(BLADERF_MODULE_RX) failed");
} else {
std::cerr << "BladerfInput: set xb200 path to " << m_settings.m_xb200Path << std::endl;
}
}
}
if((m_settings.m_xb200Filter != settings.m_xb200Filter) || force) {
m_settings.m_xb200Filter = settings.m_xb200Filter;
if(m_dev != NULL) {
if(bladerf_xb200_set_filterbank(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Filter) != 0) {
qDebug("bladerf_xb200_set_filterbank(BLADERF_MODULE_RX) failed");
} else {
std::cerr << "BladerfInput: set xb200 filter to " << m_settings.m_xb200Filter << std::endl;
}
}
}
if((m_settings.m_samplerate != settings.m_samplerate) || force) {
if(m_dev != NULL) {
unsigned int actualSamplerate;
if( bladerf_set_sample_rate(m_dev, BLADERF_MODULE_RX, settings.m_samplerate, &actualSamplerate) < 0)
qCritical("could not set sample rate: %d", settings.m_samplerate);
else {
std::cerr << "bladerf_set_sample_rate(BLADERF_MODULE_RX) actual sample rate is " << actualSamplerate << std::endl;
m_settings.m_samplerate = settings.m_samplerate;
m_bladerfThread->setSamplerate(settings.m_samplerate);
}
}
}
if((m_settings.m_bandwidth != settings.m_bandwidth) || force) {
if(m_dev != NULL) {
unsigned int actualBandwidth;
if( bladerf_set_bandwidth(m_dev, BLADERF_MODULE_RX, settings.m_bandwidth, &actualBandwidth) < 0)
qCritical("could not set sample rate: %d", settings.m_samplerate);
else {
std::cerr << "bladerf_set_bandwidth(BLADERF_MODULE_RX) actual bandwidth is " << actualBandwidth << std::endl;
m_settings.m_bandwidth = settings.m_bandwidth;
}
}
}
if((m_settings.m_log2Decim != settings.m_log2Decim) || force) {
m_settings.m_log2Decim = settings.m_log2Decim;
if(m_dev != NULL) {
m_bladerfThread->setLog2Decimation(m_settings.m_log2Decim);
std::cerr << "BladerfInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos);
std::cerr << "BladerfInput: set fc pos (enum) to " << (int) m_settings.m_fcPos << std::endl;
}
}
m_generalSettings.m_centerFrequency = generalSettings.m_centerFrequency;
if(m_dev != NULL) {
qint64 centerFrequency = m_generalSettings.m_centerFrequency;
qint64 f_img = centerFrequency;
qint64 f_cut = centerFrequency + m_settings.m_bandwidth/2;
if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == FC_POS_CENTER))
{
centerFrequency = m_generalSettings.m_centerFrequency;
f_img = centerFrequency;
f_cut = centerFrequency + m_settings.m_bandwidth/2;
}
else
{
if (m_settings.m_fcPos == FC_POS_INFRA) {
centerFrequency = m_generalSettings.m_centerFrequency + (m_settings.m_samplerate / 4);
f_img = centerFrequency + m_settings.m_samplerate/2;
f_cut = centerFrequency + m_settings.m_bandwidth/2;
} else if (m_settings.m_fcPos == FC_POS_SUPRA) {
centerFrequency = m_generalSettings.m_centerFrequency - (m_settings.m_samplerate / 4);
f_img = centerFrequency - m_settings.m_samplerate/2;
f_cut = centerFrequency - m_settings.m_bandwidth/2;
}
}
if(bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, centerFrequency ) != 0) {
qDebug("bladerf_set_frequency(%lld) failed", m_generalSettings.m_centerFrequency);
}
std::cerr << "BladerfInput: center freq: " << m_generalSettings.m_centerFrequency << " Hz"
<< " RF center freq: " << centerFrequency << " Hz"
<< " sample rate / 2 : " << m_settings.m_samplerate/2 << "Hz"
<< " BW: " << m_settings.m_bandwidth << "Hz"
<< " img: " << f_img << "Hz"
<< " cut: " << f_cut << "Hz"
<< " img - cut: " << f_img - f_cut << std::endl;
}
return true;
}
bladerf_lna_gain BladerfInput::getLnaGain(int lnaGain)
{
if (lnaGain == 2) {
return BLADERF_LNA_GAIN_MAX;
} else if (lnaGain == 1) {
return BLADERF_LNA_GAIN_MID;
} else {
return BLADERF_LNA_GAIN_BYPASS;
}
}
struct bladerf *BladerfInput::open_bladerf_from_serial(const char *serial)
{
int status;
struct bladerf *dev;
struct bladerf_devinfo info;
/* Initialize all fields to "don't care" wildcard values.
*
* Immediately passing this to bladerf_open_with_devinfo() would cause
* libbladeRF to open any device on any available backend. */
bladerf_init_devinfo(&info);
/* Specify the desired device's serial number, while leaving all other
* fields in the info structure wildcard values */
if (serial != NULL) {
strncpy(info.serial, serial, BLADERF_SERIAL_LENGTH - 1);
info.serial[BLADERF_SERIAL_LENGTH - 1] = '\0';
}
status = bladerf_open_with_devinfo(&dev, &info);
if (status == BLADERF_ERR_NODEV) {
fprintf(stderr, "No devices available with serial=%s\n", serial);
return NULL;
} else if (status != 0) {
fprintf(stderr, "Failed to open device with serial=%s (%s)\n",
serial, bladerf_strerror(status));
return NULL;
} else {
return dev;
}
}