/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "chanalyzer.h" #include #include #include #include #include "dsp/threadedbasebandsamplesink.h" #include "device/devicesourceapi.h" #include "audio/audiooutput.h" MESSAGE_CLASS_DEFINITION(ChannelAnalyzer::MsgConfigureChannelAnalyzer, Message) MESSAGE_CLASS_DEFINITION(ChannelAnalyzer::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(ChannelAnalyzer::MsgReportChannelSampleRateChanged, Message) const QString ChannelAnalyzer::m_channelIdURI = "org.f4exb.sdrangelove.channel.chanalyzer"; const QString ChannelAnalyzer::m_channelId = "ChannelAnalyzer"; ChannelAnalyzer::ChannelAnalyzer(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_sampleSink(0), m_settingsMutex(QMutex::Recursive) { setObjectName(m_channelId); m_Bandwidth = 5000; m_LowCutoff = 300; m_spanLog2 = 3; m_sampleRate = 96000; m_frequency = 0; m_nco.setFreq(m_frequency, m_sampleRate); m_undersampleCount = 0; m_sum = 0; m_usb = true; m_ssb = true; m_magsq = 0; SSBFilter = new fftfilt(m_LowCutoff / m_sampleRate, m_Bandwidth / m_sampleRate, ssbFftLen); DSBFilter = new fftfilt(m_Bandwidth / m_sampleRate, 2*ssbFftLen); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); connect(m_channelizer, SIGNAL(inputSampleRateChanged()), this, SLOT(channelSampleRateChanged())); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); } ChannelAnalyzer::~ChannelAnalyzer() { if (SSBFilter) delete SSBFilter; if (DSBFilter) delete DSBFilter; m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; } void ChannelAnalyzer::configure(MessageQueue* messageQueue, Real Bandwidth, Real LowCutoff, int spanLog2, bool ssb) { Message* cmd = MsgConfigureChannelAnalyzer::create(Bandwidth, LowCutoff, spanLog2, ssb); messageQueue->push(cmd); } void ChannelAnalyzer::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly __attribute__((unused))) { fftfilt::cmplx *sideband; int n_out; int decim = 1<real(), it->imag()); c *= m_nco.nextIQ(); if (m_ssb) { n_out = SSBFilter->runSSB(c, &sideband, m_usb); } else { n_out = DSBFilter->runDSB(c, &sideband); } for (int i = 0; i < n_out; i++) { // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display // smart decimation with bit gain using float arithmetic (23 bits significand) m_sum += sideband[i]; if (!(m_undersampleCount++ & decim_mask)) { m_sum /= decim; Real re = m_sum.real() / SDR_SCALED; Real im = m_sum.imag() / SDR_SCALED; m_magsq = re*re + im*im; if (m_ssb & !m_usb) { // invert spectrum for LSB m_sampleBuffer.push_back(Sample(m_sum.imag(), m_sum.real())); } else { m_sampleBuffer.push_back(Sample(m_sum.real(), m_sum.imag())); } m_sum = 0; } } } if(m_sampleSink != NULL) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_ssb); // m_ssb = positive only } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void ChannelAnalyzer::start() { } void ChannelAnalyzer::stop() { } void ChannelAnalyzer::channelSampleRateChanged() { MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create(); getMessageQueueToGUI()->push(msg); } bool ChannelAnalyzer::handleMessage(const Message& cmd) { float band, lowCutoff; qDebug() << "ChannelAnalyzer::handleMessage"; if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; m_sampleRate = notif.getSampleRate(); m_nco.setFreq(-notif.getFrequencyOffset(), m_sampleRate); qDebug() << "ChannelAnalyzer::handleMessage: MsgChannelizerNotification: m_sampleRate: " << m_sampleRate << " frequencyOffset: " << notif.getFrequencyOffset(); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; m_channelizer->configure(m_channelizer->getInputMessageQueue(), m_channelizer->getInputSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureChannelAnalyzer::match(cmd)) { MsgConfigureChannelAnalyzer& cfg = (MsgConfigureChannelAnalyzer&) cmd; band = cfg.getBandwidth(); lowCutoff = cfg.getLoCutoff(); if (band < 0) { band = -band; lowCutoff = -lowCutoff; m_usb = false; } else { m_usb = true; } if (band < 100.0f) { band = 100.0f; lowCutoff = 0; } m_settingsMutex.lock(); m_Bandwidth = band; m_LowCutoff = lowCutoff; SSBFilter->create_filter(m_LowCutoff / m_sampleRate, m_Bandwidth / m_sampleRate); DSBFilter->create_dsb_filter(m_Bandwidth / m_sampleRate); m_spanLog2 = cfg.getSpanLog2(); m_ssb = cfg.getSSB(); m_settingsMutex.unlock(); qDebug() << "ChannelAnalyzer::handleMessage: MsgConfigureChannelAnalyzer: m_Bandwidth: " << m_Bandwidth << " m_LowCutoff: " << m_LowCutoff << " m_spanLog2: " << m_spanLog2 << " m_ssb: " << m_ssb; return true; } else { if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } }