/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "inthalfbandfilter.h" #include "dspcommands.h" #include "hbfilterchainconverter.h" #include "upsamplechannelizer.h" UpSampleChannelizer::UpSampleChannelizer(ChannelSampleSource* sampleSource) : m_filterChainSetMode(false), m_sampleSource(sampleSource), m_outputSampleRate(0), m_requestedInputSampleRate(0), m_requestedCenterFrequency(0), m_currentInputSampleRate(0), m_currentCenterFrequency(0) { } UpSampleChannelizer::~UpSampleChannelizer() { freeFilterChain(); } void UpSampleChannelizer::pullOne(Sample& sample) { if (m_sampleSource == nullptr) { m_sampleBuffer.clear(); return; } unsigned int log2Interp = m_filterStages.size(); if (log2Interp == 0) // optimization when no downsampling is done anyway { m_sampleSource->pullOne(sample); } else { FilterStages::iterator stage = m_filterStages.begin(); std::vector::iterator stageSample = m_stageSamples.begin(); for (; stage != m_filterStages.end(); ++stage, ++stageSample) { if(stage == m_filterStages.end() - 1) { if ((*stage)->work(&m_sampleIn, &(*stageSample))) { m_sampleSource->pullOne(m_sampleIn); // get new input sample } } else { if (!(*stage)->work(&(*(stageSample+1)), &(*stageSample))) { break; } } } sample = *m_stageSamples.begin(); } } void UpSampleChannelizer::pull(SampleVector::iterator begin, unsigned int nbSamples) { if (m_sampleSource == nullptr) { m_sampleBuffer.clear(); return; } unsigned int log2Interp = m_filterStages.size(); if (log2Interp == 0) // optimization when no downsampling is done anyway { m_sampleSource->pull(begin, nbSamples); } else { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } } void UpSampleChannelizer::applyConfiguration() { m_filterChainSetMode = false; if (m_outputSampleRate == 0) { qDebug() << "UpChannelizer::applyConfiguration: aborting (out=0):" << " out =" << m_outputSampleRate << ", req =" << m_requestedInputSampleRate << ", in =" << m_currentInputSampleRate << ", fc =" << m_currentCenterFrequency; return; } freeFilterChain(); m_currentCenterFrequency = createFilterChain( m_outputSampleRate / -2, m_outputSampleRate / 2, m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2); m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size()); qDebug() << "UpChannelizer::applyConfiguration:" << " out=" << m_outputSampleRate << ", req=" << m_requestedInputSampleRate << ", in=" << m_currentInputSampleRate << ", fc=" << m_currentCenterFrequency; } void UpSampleChannelizer::applyConfiguration(int requestedSampleRate, qint64 requestedCenterFrequency) { m_requestedInputSampleRate = requestedSampleRate; m_requestedCenterFrequency = requestedCenterFrequency; applyConfiguration(); } void UpSampleChannelizer::setOutputSampleRate(int outputSampleRate) { m_outputSampleRate = outputSampleRate; applyConfiguration(); } void UpSampleChannelizer::setInterpolation(unsigned int log2Interp, unsigned int filterChainHash) { m_filterChainSetMode = true; std::vector stageIndexes; m_currentCenterFrequency = m_outputSampleRate * HBFilterChainConverter::convertToIndexes(log2Interp, filterChainHash, stageIndexes); m_requestedCenterFrequency = m_currentCenterFrequency; freeFilterChain(); m_currentCenterFrequency = m_outputSampleRate * setFilterChain(stageIndexes); m_currentInputSampleRate = m_outputSampleRate / (1 << m_filterStages.size()); m_requestedInputSampleRate = m_currentInputSampleRate; qDebug() << "UpChannelizer::applySetting in=" << m_outputSampleRate << ", out=" << m_currentInputSampleRate << ", fc=" << m_currentCenterFrequency; } #ifdef USE_SSE4_1 UpSampleChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO1), m_workFunction(0) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO1::workInterpolateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO1::workInterpolateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO1::workInterpolateUpperHalf; break; } } #else UpSampleChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterDB), m_workFunction(0) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterDB::workInterpolateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterDB::workInterpolateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterDB::workInterpolateUpperHalf; break; } } #endif UpSampleChannelizer::FilterStage::~FilterStage() { delete m_filter; } bool UpSampleChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const { //qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd); if(sigEnd <= sigStart) return false; if(chanEnd <= chanStart) return false; return (sigStart <= chanStart) && (sigEnd >= chanEnd); } Real UpSampleChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real rot = sigBw / 4; Sample s; qDebug() << "UpSampleChannelizer::createFilterChain: start:" << " sig: [" << sigStart << ":" << sigEnd << "]" << " BW: " << sigBw << " chan: [" << chanStart << ":" << chanEnd << "]" << " rot: " << rot; // check if it fits into the left half if(signalContainsChannel(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd)) { qDebug() << "UpSampleChannelizer::createFilterChain: take left half (rotate by +1/4 and decimate by 2):" << " [" << m_filterStages.size() << "]" << " sig: [" << sigStart << ":" << sigStart + sigBw / 2.0 << "]"; m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); m_stageSamples.push_back(s); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } // check if it fits into the right half if(signalContainsChannel(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd)) { qDebug() << "UpSampleChannelizer::createFilterChain: take right half (rotate by -1/4 and decimate by 2):" << " [" << m_filterStages.size() << "]" << " sig: [" << sigEnd - sigBw / 2.0f << ":" << sigEnd << "]"; m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); m_stageSamples.push_back(s); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } // check if it fits into the center // Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) { if(signalContainsChannel(sigStart + rot, sigEnd - rot, chanStart, chanEnd)) { qDebug() << "UpSampleChannelizer::createFilterChain: take center half (decimate by 2):" << " [" << m_filterStages.size() << "]" << " sig: [" << sigStart + rot << ":" << sigEnd - rot << "]"; m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); m_stageSamples.push_back(s); // Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd); return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd); } Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); qDebug() << "UpSampleChannelizer::createFilterChain: complete:" << " #stages: " << m_filterStages.size() << " BW: " << sigBw << " ofs: " << ofs; return ofs; } double UpSampleChannelizer::setFilterChain(const std::vector& stageIndexes) { // filters are described from lower to upper level but the chain is constructed the other way round std::vector::const_reverse_iterator rit = stageIndexes.rbegin(); double ofs = 0.0, ofs_stage = 0.25; Sample s; // Each index is a base 3 number with 0 = low, 1 = center, 2 = high // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting // algorithms will go from LSD to MSD. This explains the reverse order. for (; rit != stageIndexes.rend(); ++rit) { if (*rit == 0) { m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); m_stageSamples.push_back(s); ofs -= ofs_stage; } else if (*rit == 1) { m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); m_stageSamples.push_back(s); } else if (*rit == 2) { m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); m_stageSamples.push_back(s); ofs += ofs_stage; } ofs_stage /= 2; } return ofs; } void UpSampleChannelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); m_stageSamples.clear(); }