///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#include "chanalyzerng.h"
#include
#include
#include
#include "device/devicesourceapi.h"
#include "audio/audiooutput.h"
#include "dsp/threadedbasebandsamplesink.h"
#include "dsp/downchannelizer.h"
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelAnalyzer, Message)
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(ChannelAnalyzerNG::MsgReportChannelSampleRateChanged, Message)
ChannelAnalyzerNG::ChannelAnalyzerNG(DeviceSourceAPI *deviceAPI) :
m_deviceAPI(deviceAPI),
m_sampleSink(0),
m_settingsMutex(QMutex::Recursive)
{
m_undersampleCount = 0;
m_sum = 0;
m_usb = true;
m_magsq = 0;
m_useInterpolator = false;
m_interpolatorDistance = 1.0f;
m_interpolatorDistanceRemain = 0.0f;
SSBFilter = new fftfilt(m_config.m_LowCutoff / m_config.m_inputSampleRate, m_config.m_Bandwidth / m_config.m_inputSampleRate, ssbFftLen);
DSBFilter = new fftfilt(m_config.m_Bandwidth / m_config.m_inputSampleRate, 2*ssbFftLen);
m_channelizer = new DownChannelizer(this);
m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this);
connect(m_channelizer, SIGNAL(inputSampleRateChanged()), this, SLOT(channelizerInputSampleRateChanged()));
m_deviceAPI->addThreadedSink(m_threadedChannelizer);
apply(true);
}
ChannelAnalyzerNG::~ChannelAnalyzerNG()
{
if (SSBFilter) delete SSBFilter;
if (DSBFilter) delete DSBFilter;
m_deviceAPI->removeThreadedSink(m_threadedChannelizer);
delete m_threadedChannelizer;
delete m_channelizer;
}
void ChannelAnalyzerNG::configure(MessageQueue* messageQueue,
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb)
{
Message* cmd = MsgConfigureChannelAnalyzer::create(channelSampleRate, Bandwidth, LowCutoff, spanLog2, ssb);
messageQueue->push(cmd);
}
void ChannelAnalyzerNG::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly __attribute__((unused)))
{
fftfilt::cmplx *sideband = 0;
Complex ci;
m_settingsMutex.lock();
for(SampleVector::const_iterator it = begin; it < end; ++it)
{
Complex c(it->real(), it->imag());
c *= m_nco.nextIQ();
if (m_useInterpolator)
{
if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
{
processOneSample(ci, sideband);
m_interpolatorDistanceRemain += m_interpolatorDistance;
}
}
else
{
processOneSample(c, sideband);
}
}
if(m_sampleSink != 0)
{
m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), m_running.m_ssb); // m_ssb = positive only
}
m_sampleBuffer.clear();
m_settingsMutex.unlock();
}
void ChannelAnalyzerNG::start()
{
}
void ChannelAnalyzerNG::stop()
{
}
void ChannelAnalyzerNG::channelizerInputSampleRateChanged()
{
MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create();
getMessageQueueToGUI()->push(msg);
}
bool ChannelAnalyzerNG::handleMessage(const Message& cmd)
{
qDebug() << "ChannelAnalyzerNG::handleMessage: " << cmd.getIdentifier();
if (DownChannelizer::MsgChannelizerNotification::match(cmd))
{
DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd;
m_config.m_inputSampleRate = notif.getSampleRate();
m_config.m_frequency = notif.getFrequencyOffset();
qDebug() << "ChannelAnalyzerNG::handleMessage: MsgChannelizerNotification:"
<< " m_sampleRate: " << m_config.m_inputSampleRate
<< " frequencyOffset: " << m_config.m_frequency;
apply();
return true;
}
else if (MsgConfigureChannelizer::match(cmd))
{
MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
m_channelizer->configure(m_channelizer->getInputMessageQueue(),
cfg.getSampleRate(),
cfg.getCenterFrequency());
return true;
}
else if (MsgConfigureChannelAnalyzer::match(cmd))
{
MsgConfigureChannelAnalyzer& cfg = (MsgConfigureChannelAnalyzer&) cmd;
m_config.m_channelSampleRate = cfg.getChannelSampleRate();
m_config.m_Bandwidth = cfg.getBandwidth();
m_config.m_LowCutoff = cfg.getLoCutoff();
m_config.m_spanLog2 = cfg.getSpanLog2();
m_config.m_ssb = cfg.getSSB();
qDebug() << "ChannelAnalyzerNG::handleMessage: MsgConfigureChannelAnalyzer:"
<< " m_channelSampleRate: " << m_config.m_channelSampleRate
<< " m_Bandwidth: " << m_config.m_Bandwidth
<< " m_LowCutoff: " << m_config.m_LowCutoff
<< " m_spanLog2: " << m_config.m_spanLog2
<< " m_ssb: " << m_config.m_ssb;
apply();
return true;
}
else
{
if (m_sampleSink != 0)
{
return m_sampleSink->handleMessage(cmd);
}
else
{
return false;
}
}
}
void ChannelAnalyzerNG::apply(bool force)
{
if ((m_running.m_frequency != m_config.m_frequency) ||
(m_running.m_inputSampleRate != m_config.m_inputSampleRate) ||
force)
{
m_nco.setFreq(-m_config.m_frequency, m_config.m_inputSampleRate);
}
if ((m_running.m_inputSampleRate != m_config.m_inputSampleRate) ||
(m_running.m_channelSampleRate != m_config.m_channelSampleRate) ||
force)
{
m_settingsMutex.lock();
m_interpolator.create(16, m_config.m_inputSampleRate, m_config.m_inputSampleRate / 2.2);
m_interpolatorDistanceRemain = 0.0f;
m_interpolatorDistance = (Real) m_config.m_inputSampleRate / (Real) m_config.m_channelSampleRate;
m_useInterpolator = (m_config.m_inputSampleRate != m_config.m_channelSampleRate); // optim
m_settingsMutex.unlock();
}
if ((m_running.m_channelSampleRate != m_config.m_channelSampleRate) ||
(m_running.m_Bandwidth != m_config.m_Bandwidth) ||
(m_running.m_LowCutoff != m_config.m_LowCutoff) ||
force)
{
float bandwidth = m_config.m_Bandwidth;
float lowCutoff = m_config.m_LowCutoff;
if (bandwidth < 0)
{
bandwidth = -bandwidth;
lowCutoff = -lowCutoff;
m_usb = false;
}
else
{
m_usb = true;
}
if (bandwidth < 100.0f)
{
bandwidth = 100.0f;
lowCutoff = 0;
}
m_settingsMutex.lock();
SSBFilter->create_filter(lowCutoff / m_config.m_channelSampleRate, bandwidth / m_config.m_channelSampleRate);
DSBFilter->create_dsb_filter(bandwidth / m_config.m_channelSampleRate);
m_settingsMutex.unlock();
}
m_running.m_frequency = m_config.m_frequency;
m_running.m_channelSampleRate = m_config.m_channelSampleRate;
m_running.m_inputSampleRate = m_config.m_inputSampleRate;
m_running.m_Bandwidth = m_config.m_Bandwidth;
m_running.m_LowCutoff = m_config.m_LowCutoff;
//m_settingsMutex.lock();
m_running.m_spanLog2 = m_config.m_spanLog2;
m_running.m_ssb = m_config.m_ssb;
//m_settingsMutex.unlock();
}