/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2021-2022 Edouard Griffiths, F4EXB // // Copyright (C) 2021 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/basebandsamplesink.h" #include "dsp/datafifo.h" #include "dsp/scopevis.h" #include "aismodsource.h" #include "util/crc.h" #include "util/messagequeue.h" #include "maincore.h" #include "channel/channelapi.h" AISModSource::AISModSource() : m_channelSampleRate(AISModSettings::AISMOD_SAMPLE_RATE), m_channelFrequencyOffset(0), m_fmPhase(0.0), m_spectrumSink(nullptr), m_scopeSink(nullptr), m_magsq(0.0), m_levelCalcCount(0), m_peakLevel(0.0f), m_levelSum(0.0f), m_state(idle), m_byteIdx(0), m_bitIdx(0), m_last5Bits(0), m_bitCount(0), m_scopeSampleBufferIndex(0), m_specSampleBufferIndex(0) { m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_scopeSampleBuffer.resize(m_scopeSampleBufferSize); m_specSampleBuffer.resize(m_specSampleBufferSize); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } AISModSource::~AISModSource() { } void AISModSource::pull(SampleVector::iterator begin, unsigned int nbSamples) { std::for_each( begin, begin + nbSamples, [this](Sample& s) { pullOne(s); } ); } void AISModSource::pullOne(Sample& sample) { if (m_settings.m_channelMute) { sample.m_real = 0.0f; sample.m_imag = 0.0f; return; } Complex ci; if (m_interpolatorDistance > 1.0f) { modulateSample(); while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } else { if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci)) { modulateSample(); } } m_interpolatorDistanceRemain += m_interpolatorDistance; ci *= m_carrierNco.nextIQ(); // shift to carrier frequency // Calculate power double magsq = ci.real() * ci.real() + ci.imag() * ci.imag(); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); // Convert from float to fixed point sample.m_real = (FixReal) (ci.real() * SDR_TX_SCALEF); sample.m_imag = (FixReal) (ci.imag() * SDR_TX_SCALEF); } void AISModSource::sampleToSpectrum(Complex sample) { if (m_spectrumSink) { Real r = std::real(sample) * SDR_TX_SCALEF; Real i = std::imag(sample) * SDR_TX_SCALEF; m_specSampleBuffer[m_specSampleBufferIndex++] = Sample(r, i); if (m_specSampleBufferIndex == m_specSampleBufferSize) { m_spectrumSink->feed(m_specSampleBuffer.begin(), m_specSampleBuffer.end(), false); m_specSampleBufferIndex = 0; } } } void AISModSource::sampleToScope(Complex sample) { if (m_scopeSink) { Real r = std::real(sample) * SDR_RX_SCALEF; Real i = std::imag(sample) * SDR_RX_SCALEF; m_scopeSampleBuffer[m_scopeSampleBufferIndex++] = Sample(r, i); if (m_scopeSampleBufferIndex == m_scopeSampleBufferSize) { std::vector vbegin; vbegin.push_back(m_scopeSampleBuffer.begin()); m_scopeSink->feed(vbegin, m_scopeSampleBufferSize); m_scopeSampleBufferIndex = 0; } } } void AISModSource::modulateSample() { Real mod; Real linearRampGain; if ((m_state == idle) || (m_state == wait)) { m_modSample.real(0.0f); m_modSample.imag(0.0f); sampleToSpectrum(m_modSample); sampleToScope(m_modSample); Real s = std::abs(m_modSample); calculateLevel(s); if (m_state == wait) { m_waitCounter--; if (m_waitCounter == 0) { initTX(); } } } else { if (m_sampleIdx == 0) { if (bitsValid()) { // NRZI encoding - encode 0 as change of freq, 1 no change if (getBit() == 0) { m_nrziBit = m_nrziBit == 1 ? 0 : 1; } } // Should we start ramping down power? if ((m_bitCount < m_settings.m_rampDownBits) || ((m_bitCount == 0) && !m_settings.m_rampDownBits)) { m_state = ramp_down; if (m_settings.m_rampDownBits > 0) { m_powRamp = -m_settings.m_rampRange/(m_settings.m_rampDownBits * (Real)m_samplesPerSymbol); } } } m_sampleIdx++; if (m_sampleIdx >= m_samplesPerSymbol) { m_sampleIdx = 0; } // Apply Gaussian pulse shaping filter mod = m_pulseShape.filter(m_nrziBit ? 1.0f : -1.0f); // FM m_fmPhase += m_phaseSensitivity * mod; // Keep phase in range -pi,pi if (m_fmPhase > M_PI) { m_fmPhase -= 2.0f * M_PI; } else if (m_fmPhase < -M_PI) { m_fmPhase += 2.0f * M_PI; } linearRampGain = powf(10.0f, m_pow/20.0f); m_modSample.real(m_linearGain * linearRampGain * cos(m_fmPhase)); m_modSample.imag(m_linearGain * linearRampGain * sin(m_fmPhase)); if (m_iqFile.is_open()) { m_iqFile << mod << "," << m_modSample.real() << "," << m_modSample.imag() << "\n"; } if (m_settings.m_rfNoise) { // Noise to test filter frequency response m_modSample.real(m_linearGain * ((Real)rand()/((Real)RAND_MAX)-0.5f)); m_modSample.imag(m_linearGain * ((Real)rand()/((Real)RAND_MAX)-0.5f)); } // Display baseband in spectrum analyser and scope sampleToSpectrum(m_modSample); sampleToScope(m_modSample); // Ramp up/down power at start/end of packet if ((m_state == ramp_up) || (m_state == ramp_down)) { m_pow += m_powRamp; if ((m_state == ramp_up) && (m_pow >= 0.0f)) { // Finished ramp up, transmit at full gain m_state = tx; m_pow = 0.0f; } else if ((m_state == ramp_down) && ( (m_settings.m_rampRange == 0) || (m_settings.m_rampDownBits == 0) || (m_pow <= -(Real)m_settings.m_rampRange) )) { m_state = idle; // Do we need to retransmit the packet? if (m_settings.m_repeat) { if (m_packetRepeatCount > 0) m_packetRepeatCount--; if ((m_packetRepeatCount == AISModSettings::infinitePackets) || (m_packetRepeatCount > 0)) { if (m_settings.m_repeatDelay > 0.0f) { // Wait before retransmitting m_state = wait; m_waitCounter = m_settings.m_repeatDelay * AISModSettings::AISMOD_SAMPLE_RATE; } else { // Retransmit immediately initTX(); } } } } } Real s = std::abs(m_modSample); calculateLevel(s); } // Send Gaussian filter output to mod analyzer m_demodBuffer[m_demodBufferFill] = std::real(mod) * std::numeric_limits::max(); ++m_demodBufferFill; if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (dataPipes.size() > 0) { QList::iterator it = dataPipes.begin(); for (; it != dataPipes.end(); ++it) { DataFifo *fifo = qobject_cast((*it)->m_element); if (fifo) { fifo->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16); } } } m_demodBufferFill = 0; } } void AISModSource::calculateLevel(Real& sample) { if (m_levelCalcCount < m_levelNbSamples) { m_peakLevel = std::max(std::fabs(m_peakLevel), sample); m_levelSum += sample * sample; m_levelCalcCount++; } else { m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples); m_peakLevelOut = m_peakLevel; m_peakLevel = 0.0f; m_levelSum = 0.0f; m_levelCalcCount = 0; } } void AISModSource::applySettings(const AISModSettings& settings, bool force) { if ((settings.m_bt != m_settings.m_bt) || (settings.m_symbolSpan != m_settings.m_symbolSpan) || (settings.m_baud != m_settings.m_baud) || force) { qDebug() << "AISModSource::applySettings: Recreating pulse shaping filter: " << " SampleRate:" << AISModSettings::AISMOD_SAMPLE_RATE << " bt: " << settings.m_bt << " symbolSpan: " << settings.m_symbolSpan << " baud:" << settings.m_baud << " data:" << settings.m_data; m_pulseShape.create(settings.m_bt, settings.m_symbolSpan, AISModSettings::AISMOD_SAMPLE_RATE/settings.m_baud); } if ((settings.m_data != m_settings.m_data) || force) { qDebug() << "AISModSource::applySettings: new data: " << settings.m_data; addTXPacket(settings.m_data); } m_settings = settings; // Precalculate FM sensensity and linear gain to save doing it in the loop m_samplesPerSymbol = AISModSettings::AISMOD_SAMPLE_RATE / m_settings.m_baud; Real modIndex = m_settings.m_fmDeviation / (Real)m_settings.m_baud; m_phaseSensitivity = 2.0f * M_PI * modIndex / (Real)m_samplesPerSymbol; m_linearGain = powf(10.0f, m_settings.m_gain/20.0f); } void AISModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "AISModSource::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset << " rfBandwidth: " << m_settings.m_rfBandwidth; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) AISModSettings::AISMOD_SAMPLE_RATE / (Real) channelSampleRate; m_interpolator.create(48, AISModSettings::AISMOD_SAMPLE_RATE, m_settings.m_rfBandwidth / 2.2, 3.0); } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; QList pipes; MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes); if (pipes.size() > 0) { for (const auto& pipe : pipes) { MessageQueue* messageQueue = qobject_cast(pipe->m_element); MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, m_channelSampleRate); messageQueue->push(msg); } } } bool AISModSource::bitsValid() { return m_bitCount > 0; } int AISModSource::getBit() { int bit; if (m_bitCount > 0) { bit = (m_bits[m_byteIdx] >> m_bitIdx) & 1; m_bitIdx++; m_bitCount--; if (m_bitIdx == 8) { m_byteIdx++; m_bitIdx = 0; } } else bit = 0; return bit; } void AISModSource::addBit(int bit) { // Transmit LSB first m_bits[m_byteIdx] |= bit << m_bitIdx; m_bitIdx++; m_bitCount++; m_bitCountTotal++; if (m_bitIdx == 8) { m_byteIdx++; m_bits[m_byteIdx] = 0; m_bitIdx = 0; } m_last5Bits = ((m_last5Bits << 1) | bit) & 0x1f; } void AISModSource::initTX() { m_byteIdx = 0; m_bitIdx = 0; m_bitCount = m_bitCountTotal; // Reset to allow retransmission m_nrziBit = 1; if (m_settings.m_rampUpBits == 0) { m_state = tx; m_pow = 0.0f; } else { m_state = ramp_up; m_pow = -(Real)m_settings.m_rampRange; m_powRamp = m_settings.m_rampRange/(m_settings.m_rampUpBits * (Real)m_samplesPerSymbol); } } void AISModSource::addTXPacket(const QString& data) { QByteArray ba = QByteArray::fromHex(data.toUtf8()); addTXPacket(ba); } void AISModSource::addTXPacket(QByteArray data) { uint8_t packet[AIS_MAX_BYTES]; uint8_t *crc_start; uint8_t *packet_end; uint8_t *p; crc16x25 crc; uint16_t crcValue; int packet_length; // Create AIS message p = packet; // Training *p++ = AIS_TRAIN; *p++ = AIS_TRAIN; *p++ = AIS_TRAIN; // Flag *p++ = AIS_FLAG; crc_start = p; // Copy packet payload for (int i = 0; i < data.size(); i++) { *p++ = data[i]; } // CRC (do not include flags) crc.calculate(crc_start, p-crc_start); crcValue = crc.get(); *p++ = crcValue & 0xff; *p++ = (crcValue >> 8); packet_end = p; // Flag *p++ = AIS_FLAG; // Buffer *p++ = 0; packet_length = p-&packet[0]; encodePacket(packet, packet_length, crc_start, packet_end); } void AISModSource::encodePacket(uint8_t *packet, int packet_length, uint8_t *crc_start, uint8_t *packet_end) { // HDLC bit stuffing m_byteIdx = 0; m_bitIdx = 0; m_last5Bits = 0; m_bitCount = 0; m_bitCountTotal = 0; for (int i = 0; i < packet_length; i++) { for (int j = 0; j < 8; j++) { int tx_bit = (packet[i] >> j) & 1; // Stuff 0 if last 5 bits are 1s, unless transmitting flag // Except for special case of when last 5 bits of CRC are 1s if ( ( (packet[i] != AIS_FLAG) || ( (&packet[i] >= crc_start) && ( (&packet[i] < packet_end) || ((&packet[i] == packet_end) && (j == 0)) ) ) ) && (m_last5Bits == 0x1f) ) addBit(0); addBit(tx_bit); } } //m_samplesPerSymbol = AISMOD_SAMPLE_RATE / m_settings.m_baud; m_packetRepeatCount = m_settings.m_repeatCount; } void AISModSource::transmit() { initTX(); // Only reset phases at start of new packet TX, not in initTX(), so that // there isn't a discontinuity in phase when repeatedly transmitting a // single tone m_sampleIdx = 0; m_fmPhase = 0.0; if (m_settings.m_writeToFile) m_iqFile.open("aismod.csv", std::ofstream::out); else if (m_iqFile.is_open()) m_iqFile.close(); }