/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "audiog722.h" #define G722_SAMPLE_RATE_8000 1 #define G722_PACKED 2 const int AudioG722::q6[32] = { 0, 35, 72, 110, 150, 190, 233, 276, 323, 370, 422, 473, 530, 587, 650, 714, 786, 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, 1765, 1980, 2195, 2557, 2919, 0, 0 }; const int AudioG722::iln[32] = { 0, 63, 62, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 0 }; const int AudioG722::ilp[32] = { 0, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 0 }; const int AudioG722::wl[8] = { -60, -30, 58, 172, 334, 538, 1198, 3042 }; const int AudioG722::rl42[16] = { 0, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 0 }; const int AudioG722::ilb[32] = { 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383, 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834, 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371, 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 }; const int AudioG722::qm4[16] = { 0, -20456, -12896, -8968, -6288, -4240, -2584, -1200, 20456, 12896, 8968, 6288, 4240, 2584, 1200, 0 }; const int AudioG722::qm2[4] = { -7408, -1616, 7408, 1616 }; const int AudioG722::qmf_coeffs[12] = { 3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11, }; const int AudioG722::ihn[3] = {0, 1, 0}; const int AudioG722::ihp[3] = {0, 3, 2}; const int AudioG722::wh[3] = {0, -214, 798}; const int AudioG722::rh2[4] = {2, 1, 2, 1}; AudioG722::g722_encode_state::g722_encode_state() { init(64000, 0); } void AudioG722::g722_encode_state::init(int rate, int options) { itu_test_mode = 0; std::fill(x, x+24, 0); in_buffer = 0; in_bits = 0; out_buffer = 0; out_bits = 0; char *pBand = (char *) band; std::fill(pBand, pBand + sizeof(band), 0); if (rate == 48000) { bits_per_sample = 6; } else if (rate == 56000) { bits_per_sample = 7; } else { bits_per_sample = 8; } if ((options & G722_SAMPLE_RATE_8000)) { eight_k = 1; } else { eight_k = 0; } if ((options & G722_PACKED) && bits_per_sample != 8) { packed = 1; } else { packed = 0; } band[0].det = 32; band[1].det = 8; } AudioG722::AudioG722() {} AudioG722::~AudioG722() {} void AudioG722::init(int rate, int options) { state.init(rate, options); } void AudioG722::block4(int band, int d) { int wd1; int wd2; int wd3; int i; /* Block 4, RECONS */ state.band[band].d[0] = d; state.band[band].r[0] = saturate(state.band[band].s + d); /* Block 4, PARREC */ state.band[band].p[0] = saturate(state.band[band].sz + d); /* Block 4, UPPOL2 */ for (i = 0; i < 3; i++) { state.band[band].sg[i] = state.band[band].p[i] >> 15; } wd1 = saturate(state.band[band].a[1] << 2); wd2 = (state.band[band].sg[0] == state.band[band].sg[1]) ? -wd1 : wd1; if (wd2 > 32767) { wd2 = 32767; } wd3 = (wd2 >> 7) + ((state.band[band].sg[0] == state.band[band].sg[2]) ? 128 : -128); wd3 += (state.band[band].a[2]*32512) >> 15; if (wd3 > 12288) { wd3 = 12288; } else if (wd3 < -12288) { wd3 = -12288; } state.band[band].ap[2] = wd3; /* Block 4, UPPOL1 */ state.band[band].sg[0] = state.band[band].p[0] >> 15; state.band[band].sg[1] = state.band[band].p[1] >> 15; wd1 = (state.band[band].sg[0] == state.band[band].sg[1]) ? 192 : -192; wd2 = (state.band[band].a[1]*32640) >> 15; state.band[band].ap[1] = saturate(wd1 + wd2); wd3 = saturate(15360 - state.band[band].ap[2]); if (state.band[band].ap[1] > wd3) { state.band[band].ap[1] = wd3; } else if (state.band[band].ap[1] < -wd3) { state.band[band].ap[1] = -wd3; } /* Block 4, UPZERO */ wd1 = (d == 0) ? 0 : 128; state.band[band].sg[0] = d >> 15; for (i = 1; i < 7; i++) { state.band[band].sg[i] = state.band[band].d[i] >> 15; wd2 = (state.band[band].sg[i] == state.band[band].sg[0]) ? wd1 : -wd1; wd3 = (state.band[band].b[i]*32640) >> 15; state.band[band].bp[i] = saturate(wd2 + wd3); } /* Block 4, DELAYA */ for (i = 6; i > 0; i--) { state.band[band].d[i] = state.band[band].d[i - 1]; state.band[band].b[i] = state.band[band].bp[i]; } for (i = 2; i > 0; i--) { state.band[band].r[i] = state.band[band].r[i - 1]; state.band[band].p[i] = state.band[band].p[i - 1]; state.band[band].a[i] = state.band[band].ap[i]; } /* Block 4, FILTEP */ wd1 = saturate(state.band[band].r[1] + state.band[band].r[1]); wd1 = (state.band[band].a[1]*wd1) >> 15; wd2 = saturate(state.band[band].r[2] + state.band[band].r[2]); wd2 = (state.band[band].a[2]*wd2) >> 15; state.band[band].sp = saturate(wd1 + wd2); /* Block 4, FILTEZ */ state.band[band].sz = 0; for (i = 6; i > 0; i--) { wd1 = saturate(state.band[band].d[i] + state.band[band].d[i]); state.band[band].sz += (state.band[band].b[i]*wd1) >> 15; } state.band[band].sz = saturate(state.band[band].sz); /* Block 4, PREDIC */ state.band[band].s = saturate(state.band[band].sp + state.band[band].sz); } int AudioG722::encode(uint8_t g722_data[], const int16_t amp[], int len) { int dlow; int dhigh; int el; int wd; int wd1; int ril; int wd2; int il4; int ih2; int wd3; int eh; int mih; int i; int j; /* Low and high band PCM from the QMF */ int xlow; int xhigh; int g722_bytes; /* Even and odd tap accumulators */ int sumeven; int sumodd; int ihigh; int ilow; int code; g722_bytes = 0; xhigh = 0; for (j = 0; j < len; ) { if (state.itu_test_mode) { xhigh = amp[j++] >> 1; xlow = xhigh; } else { if (state.eight_k) { xlow = amp[j++] >> 1; } else { /* Apply the transmit QMF */ /* Shuffle the buffer down */ for (i = 0; i < 22; i++) { state.x[i] = state.x[i + 2]; } state.x[22] = amp[j++]; state.x[23] = amp[j++]; /* Discard every other QMF output */ sumeven = 0; sumodd = 0; for (i = 0; i < 12; i++) { sumodd += state.x[2*i]*qmf_coeffs[i]; sumeven += state.x[2*i + 1]*qmf_coeffs[11 - i]; } xlow = (sumeven + sumodd) >> 14; xhigh = (sumeven - sumodd) >> 14; } } /* Block 1L, SUBTRA */ el = saturate(xlow - state.band[0].s); /* Block 1L, QUANTL */ wd = (el >= 0) ? el : -(el + 1); for (i = 1; i < 30; i++) { wd1 = (q6[i]*state.band[0].det) >> 12; if (wd < wd1) { break; } } ilow = (el < 0) ? iln[i] : ilp[i]; /* Block 2L, INVQAL */ ril = ilow >> 2; wd2 = qm4[ril]; dlow = (state.band[0].det*wd2) >> 15; /* Block 3L, LOGSCL */ il4 = rl42[ril]; wd = (state.band[0].nb*127) >> 7; state.band[0].nb = wd + wl[il4]; if (state.band[0].nb < 0) { state.band[0].nb = 0; } else if (state.band[0].nb > 18432) { state.band[0].nb = 18432; } /* Block 3L, SCALEL */ wd1 = (state.band[0].nb >> 6) & 31; wd2 = 8 - (state.band[0].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); state.band[0].det = wd3 << 2; block4(0, dlow); if (state.eight_k) { /* Just leave the high bits as zero */ code = (0xC0 | ilow) >> (8 - state.bits_per_sample); } else { /* Block 1H, SUBTRA */ eh = saturate(xhigh - state.band[1].s); /* Block 1H, QUANTH */ wd = (eh >= 0) ? eh : -(eh + 1); wd1 = (564*state.band[1].det) >> 12; mih = (wd >= wd1) ? 2 : 1; ihigh = (eh < 0) ? ihn[mih] : ihp[mih]; /* Block 2H, INVQAH */ wd2 = qm2[ihigh]; dhigh = (state.band[1].det*wd2) >> 15; /* Block 3H, LOGSCH */ ih2 = rh2[ihigh]; wd = (state.band[1].nb*127) >> 7; state.band[1].nb = wd + wh[ih2]; if (state.band[1].nb < 0) { state.band[1].nb = 0; } else if (state.band[1].nb > 22528) { state.band[1].nb = 22528; } /* Block 3H, SCALEH */ wd1 = (state.band[1].nb >> 6) & 31; wd2 = 10 - (state.band[1].nb >> 11); wd3 = (wd2 < 0) ? (ilb[wd1] << -wd2) : (ilb[wd1] >> wd2); state.band[1].det = wd3 << 2; block4(1, dhigh); code = ((ihigh << 6) | ilow) >> (8 - state.bits_per_sample); } if (state.packed) { /* Pack the code bits */ state.out_buffer |= (code << state.out_bits); state.out_bits += state.bits_per_sample; if (state.out_bits >= 8) { g722_data[g722_bytes++] = (uint8_t) (state.out_buffer & 0xFF); state.out_bits -= 8; state.out_buffer >>= 8; } } else { g722_data[g722_bytes++] = (uint8_t) code; } } return g722_bytes; }