/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include "hackrfinput.h" #include #include #include #include "util/simpleserializer.h" #include "dsp/dspcommands.h" #include "dsp/dspengine.h" #include "dsp/filerecord.h" #include "device/devicesourceapi.h" #include "device/devicesinkapi.h" #include "hackrf/devicehackrfvalues.h" #include "hackrf/devicehackrfshared.h" #include "hackrfinputgui.h" #include "hackrfinputthread.h" MESSAGE_CLASS_DEFINITION(HackRFInput::MsgConfigureHackRF, Message) MESSAGE_CLASS_DEFINITION(HackRFInput::MsgReportHackRF, Message) MESSAGE_CLASS_DEFINITION(HackRFInput::MsgFileRecord, Message) HackRFInput::HackRFInput(DeviceSourceAPI *deviceAPI) : m_deviceAPI(deviceAPI), m_settings(), m_dev(0), m_hackRFThread(0), m_deviceDescription("HackRF"), m_running(false) { openDevice(); char recFileNameCStr[30]; sprintf(recFileNameCStr, "test_%d.sdriq", m_deviceAPI->getDeviceUID()); m_fileSink = new FileRecord(std::string(recFileNameCStr)); m_deviceAPI->addSink(m_fileSink); m_deviceAPI->setBuddySharedPtr(&m_sharedParams); } HackRFInput::~HackRFInput() { if (m_running) stop(); m_deviceAPI->removeSink(m_fileSink); delete m_fileSink; closeDevice(); m_deviceAPI->setBuddySharedPtr(0); } void HackRFInput::destroy() { delete this; } bool HackRFInput::openDevice() { if (m_dev != 0) { closeDevice(); } if (!m_sampleFifo.setSize(1<<19)) { qCritical("HackRFInput::start: could not allocate SampleFifo"); return false; } if (m_deviceAPI->getSinkBuddies().size() > 0) { DeviceSinkAPI *buddy = m_deviceAPI->getSinkBuddies()[0]; DeviceHackRFParams *buddySharedParams = (DeviceHackRFParams *) buddy->getBuddySharedPtr(); if (buddySharedParams == 0) { qCritical("HackRFInput::openDevice: could not get shared parameters from buddy"); return false; } if (buddySharedParams->m_dev == 0) // device is not opened by buddy { qCritical("HackRFInput::openDevice: could not get HackRF handle from buddy"); return false; } m_sharedParams = *(buddySharedParams); // copy parameters from buddy m_dev = m_sharedParams.m_dev; // get HackRF handle } else { if ((m_dev = DeviceHackRF::open_hackrf(qPrintable(m_deviceAPI->getSampleSourceSerial()))) == 0) { qCritical("HackRFInput::openDevice: could not open HackRF %s", qPrintable(m_deviceAPI->getSampleSourceSerial())); return false; } m_sharedParams.m_dev = m_dev; } return true; } bool HackRFInput::start() { // QMutexLocker mutexLocker(&m_mutex); if (!m_dev) { return false; } if (m_running) stop(); if ((m_hackRFThread = new HackRFInputThread(m_dev, &m_sampleFifo)) == 0) { qFatal("HackRFInput::start: out of memory"); stop(); return false; } // mutexLocker.unlock(); applySettings(m_settings, true); m_hackRFThread->setSamplerate(m_settings.m_devSampleRate); m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim); m_hackRFThread->setFcPos((int) m_settings.m_fcPos); m_hackRFThread->startWork(); qDebug("HackRFInput::startInput: started"); m_running = true; return true; } void HackRFInput::closeDevice() { if (m_deviceAPI->getSinkBuddies().size() == 0) { qDebug("HackRFInput::closeDevice: closing device since Tx side is not open"); if(m_dev != 0) // close BladeRF { hackrf_close(m_dev); //hackrf_exit(); // TODO: this may not work if several HackRF Devices are running concurrently. It should be handled globally in the application } } m_sharedParams.m_dev = 0; m_dev = 0; } void HackRFInput::stop() { qDebug("HackRFInput::stop"); // QMutexLocker mutexLocker(&m_mutex); if (m_hackRFThread != 0) { m_hackRFThread->stopWork(); delete m_hackRFThread; m_hackRFThread = 0; } m_running = false; } const QString& HackRFInput::getDeviceDescription() const { return m_deviceDescription; } int HackRFInput::getSampleRate() const { return (m_settings.m_devSampleRate / (1<startRecording(); } else { m_fileSink->stopRecording(); } return true; } else { return false; } } void HackRFInput::setCenterFrequency(quint64 freq_hz) { qint64 df = ((qint64)freq_hz * m_settings.m_LOppmTenths) / 10000000LL; freq_hz += df; hackrf_error rc = (hackrf_error) hackrf_set_freq(m_dev, static_cast(freq_hz)); if (rc != HACKRF_SUCCESS) { qWarning("HackRFInput::setCenterFrequency: could not frequency to %llu Hz", freq_hz); } else { qWarning("HackRFInput::setCenterFrequency: frequency set to %llu Hz", freq_hz); } } bool HackRFInput::applySettings(const HackRFInputSettings& settings, bool force) { // QMutexLocker mutexLocker(&m_mutex); bool forwardChange = false; hackrf_error rc; qDebug() << "HackRFInput::applySettings"; if (m_settings.m_dcBlock != settings.m_dcBlock) { m_settings.m_dcBlock = settings.m_dcBlock; m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection); } if (m_settings.m_iqCorrection != settings.m_iqCorrection) { m_settings.m_iqCorrection = settings.m_iqCorrection; m_deviceAPI->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection); } if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force) { m_settings.m_devSampleRate = settings.m_devSampleRate; forwardChange = true; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_sample_rate_manual(m_dev, m_settings.m_devSampleRate, 1); if (rc != HACKRF_SUCCESS) { qCritical("HackRFInput::applySettings: could not set sample rate TO %llu S/s: %s", m_settings.m_devSampleRate, hackrf_error_name(rc)); } else { if (m_hackRFThread != 0) { qDebug("HackRFInput::applySettings: sample rate set to %llu S/s", m_settings.m_devSampleRate); m_hackRFThread->setSamplerate(m_settings.m_devSampleRate); } } } } if ((m_settings.m_log2Decim != settings.m_log2Decim) || force) { m_settings.m_log2Decim = settings.m_log2Decim; forwardChange = true; if (m_hackRFThread != 0) { m_hackRFThread->setLog2Decimation(m_settings.m_log2Decim); qDebug() << "HackRFInput: set decimation to " << (1<getSinkBuddies().size() > 0)) { DeviceSinkAPI *buddy = m_deviceAPI->getSinkBuddies()[0]; if (buddy->getSampleSinkGUIMessageQueue()) { DeviceHackRFShared::MsgConfigureFrequencyDelta *deltaMsg = DeviceHackRFShared::MsgConfigureFrequencyDelta::create(settings.m_centerFrequency - m_settings.m_centerFrequency); buddy->getSampleSinkGUIMessageQueue()->push(deltaMsg); } // TODO: send to buddy sample sink } } if (force || (m_settings.m_centerFrequency != settings.m_centerFrequency) || (m_settings.m_LOppmTenths != settings.m_LOppmTenths) || (m_settings.m_fcPos != settings.m_fcPos)) { m_settings.m_centerFrequency = settings.m_centerFrequency; m_settings.m_LOppmTenths = settings.m_LOppmTenths; if ((m_settings.m_log2Decim == 0) || (settings.m_fcPos == HackRFInputSettings::FC_POS_CENTER)) { deviceCenterFrequency = m_settings.m_centerFrequency; f_img = deviceCenterFrequency; } else { if (settings.m_fcPos == HackRFInputSettings::FC_POS_INFRA) { deviceCenterFrequency = m_settings.m_centerFrequency + (devSampleRate / 4); f_img = deviceCenterFrequency + devSampleRate/2; } else if (settings.m_fcPos == HackRFInputSettings::FC_POS_SUPRA) { deviceCenterFrequency = m_settings.m_centerFrequency - (devSampleRate / 4); f_img = deviceCenterFrequency - devSampleRate/2; } } if (m_dev != 0) { setCenterFrequency(deviceCenterFrequency); qDebug() << "HackRFInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz" << " device center freq: " << deviceCenterFrequency << " Hz" << " device sample rate: " << devSampleRate << "Hz" << " Actual sample rate: " << devSampleRate/(1<setFcPos((int) m_settings.m_fcPos); qDebug() << "HackRFInput: set fc pos (enum) to " << (int) m_settings.m_fcPos; } } if ((m_settings.m_lnaGain != settings.m_lnaGain) || force) { m_settings.m_lnaGain = settings.m_lnaGain; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_lna_gain(m_dev, m_settings.m_lnaGain); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: airspy_set_lna_gain failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: LNA gain set to " << m_settings.m_lnaGain; } } } if ((m_settings.m_vgaGain != settings.m_vgaGain) || force) { m_settings.m_vgaGain = settings.m_vgaGain; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_vga_gain(m_dev, m_settings.m_vgaGain); if (rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_vga_gain failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: VGA gain set to " << m_settings.m_vgaGain; } } } if ((m_settings.m_bandwidth != settings.m_bandwidth) || force) { m_settings.m_bandwidth = settings.m_bandwidth; if (m_dev != 0) { uint32_t bw_index = hackrf_compute_baseband_filter_bw_round_down_lt(m_settings.m_bandwidth + 1); // +1 so the round down to lower than yields desired bandwidth rc = (hackrf_error) hackrf_set_baseband_filter_bandwidth(m_dev, bw_index); if (rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_baseband_filter_bandwidth failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: Baseband BW filter set to " << m_settings.m_bandwidth << " Hz"; } } } if ((m_settings.m_biasT != settings.m_biasT) || force) { m_settings.m_biasT = settings.m_biasT; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_antenna_enable(m_dev, (m_settings.m_biasT ? 1 : 0)); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_antenna_enable failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: bias tee set to " << m_settings.m_biasT; } } } if ((m_settings.m_lnaExt != settings.m_lnaExt) || force) { m_settings.m_lnaExt = settings.m_lnaExt; if (m_dev != 0) { rc = (hackrf_error) hackrf_set_amp_enable(m_dev, (m_settings.m_lnaExt ? 1 : 0)); if(rc != HACKRF_SUCCESS) { qDebug("HackRFInput::applySettings: hackrf_set_amp_enable failed: %s", hackrf_error_name(rc)); } else { qDebug() << "HackRFInput:applySettings: extra LNA set to " << m_settings.m_lnaExt; } } } if (forwardChange) { int sampleRate = devSampleRate/(1<handleMessage(*notif); // forward to file sink m_deviceAPI->getDeviceEngineInputMessageQueue()->push(notif); } m_settings.m_linkTxFrequency = settings.m_linkTxFrequency; qDebug() << "HackRFInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz" << " device center freq: " << deviceCenterFrequency << " Hz" << " device sample rate: " << m_settings.m_devSampleRate << "S/s" << " Actual sample rate: " << m_settings.m_devSampleRate/(1<