/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016-2019 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/inthalfbandfilter.h" #include "dsp/dspcommands.h" #include "dsp/hbfilterchainconverter.h" #include #include MESSAGE_CLASS_DEFINITION(DownChannelizer::MsgChannelizerNotification, Message) MESSAGE_CLASS_DEFINITION(DownChannelizer::MsgSetChannelizer, Message) DownChannelizer::DownChannelizer(BasebandSampleSink* sampleSink) : m_filterChainSetMode(false), m_sampleSink(sampleSink), m_inputSampleRate(0), m_requestedOutputSampleRate(0), m_requestedCenterFrequency(0), m_currentOutputSampleRate(0), m_currentCenterFrequency(0) { QString name = "DownChannelizer(" + m_sampleSink->objectName() + ")"; setObjectName(name); } DownChannelizer::~DownChannelizer() { freeFilterChain(); } void DownChannelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency) { Message* cmd = new DSPConfigureChannelizer(sampleRate, centerFrequency); messageQueue->push(cmd); } void DownChannelizer::set(MessageQueue* messageQueue, unsigned int log2Decim, unsigned int filterChainHash) { Message* cmd = new MsgSetChannelizer(log2Decim, filterChainHash); messageQueue->push(cmd); } void DownChannelizer::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly) { if(m_sampleSink == 0) { m_sampleBuffer.clear(); return; } if (m_filterStages.size() == 0) // optimization when no downsampling is done anyway { m_sampleSink->feed(begin, end, positiveOnly); } else { m_mutex.lock(); for(SampleVector::const_iterator sample = begin; sample != end; ++sample) { Sample s(*sample); FilterStages::iterator stage = m_filterStages.begin(); for (; stage != m_filterStages.end(); ++stage) { #ifndef SDR_RX_SAMPLE_24BIT s.m_real /= 2; // avoid saturation on 16 bit samples s.m_imag /= 2; #endif if(!(*stage)->work(&s)) { break; } } if(stage == m_filterStages.end()) { #ifdef SDR_RX_SAMPLE_24BIT s.m_real /= (1<<(m_filterStages.size())); // on 32 bit samples there is enough headroom to just divide the final result s.m_imag /= (1<<(m_filterStages.size())); #endif m_sampleBuffer.push_back(s); } } m_mutex.unlock(); m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), positiveOnly); m_sampleBuffer.clear(); } } void DownChannelizer::start() { if (m_sampleSink != 0) { qDebug() << "DownChannelizer::start: thread: " << thread() << " m_inputSampleRate: " << m_inputSampleRate << " m_requestedOutputSampleRate: " << m_requestedOutputSampleRate << " m_requestedCenterFrequency: " << m_requestedCenterFrequency; m_sampleSink->start(); } } void DownChannelizer::stop() { if(m_sampleSink != 0) m_sampleSink->stop(); } bool DownChannelizer::handleMessage(const Message& cmd) { // TODO: apply changes only if input sample rate or requested output sample rate change. Change of center frequency has no impact. if (DSPSignalNotification::match(cmd)) { DSPSignalNotification& notif = (DSPSignalNotification&) cmd; m_inputSampleRate = notif.getSampleRate(); qDebug() << "DownChannelizer::handleMessage: DSPSignalNotification: m_inputSampleRate: " << m_inputSampleRate; if (!m_filterChainSetMode) { applyConfiguration(); } if (m_sampleSink != 0) { DSPSignalNotification* rep = new DSPSignalNotification(notif); // make a copy m_sampleSink->getInputMessageQueue()->push(rep); } emit inputSampleRateChanged(); return true; } else if (DSPConfigureChannelizer::match(cmd)) { DSPConfigureChannelizer& chan = (DSPConfigureChannelizer&) cmd; m_requestedOutputSampleRate = chan.getSampleRate(); m_requestedCenterFrequency = chan.getCenterFrequency(); // qDebug() << "DownChannelizer::handleMessage: DSPConfigureChannelizer:" // << " m_requestedOutputSampleRate: " << m_requestedOutputSampleRate // << " m_requestedCenterFrequency: " << m_requestedCenterFrequency; applyConfiguration(); return true; } else if (MsgSetChannelizer::match(cmd)) { MsgSetChannelizer& chan = (MsgSetChannelizer&) cmd; qDebug() << "DownChannelizer::handleMessage: MsgSetChannelizer"; applySetting(chan.getLog2Decim(), chan.getFilterChainHash()); return true; } else if (BasebandSampleSink::MsgThreadedSink::match(cmd)) { qDebug() << "DownChannelizer::handleMessage: MsgThreadedSink: forwarded to demod"; return m_sampleSink->handleMessage(cmd); // this message is passed to the demod } else { qDebug() << "DownChannelizer::handleMessage: " << cmd.getIdentifier() << " unhandled"; return false; } } void DownChannelizer::applyConfiguration() { m_filterChainSetMode = false; if (m_inputSampleRate == 0) { qDebug() << "DownChannelizer::applyConfiguration: m_inputSampleRate=0 aborting"; return; } m_mutex.lock(); freeFilterChain(); m_currentCenterFrequency = createFilterChain( m_inputSampleRate / -2, m_inputSampleRate / 2, m_requestedCenterFrequency - m_requestedOutputSampleRate / 2, m_requestedCenterFrequency + m_requestedOutputSampleRate / 2); m_mutex.unlock(); //debugFilterChain(); m_currentOutputSampleRate = m_inputSampleRate / (1 << m_filterStages.size()); qDebug() << "DownChannelizer::applyConfiguration in=" << m_inputSampleRate << ", req=" << m_requestedOutputSampleRate << ", out=" << m_currentOutputSampleRate << ", fc=" << m_currentCenterFrequency; if (m_sampleSink != 0) { MsgChannelizerNotification *notif = MsgChannelizerNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency); m_sampleSink->getInputMessageQueue()->push(notif); } } void DownChannelizer::applySetting(unsigned int log2Decim, unsigned int filterChainHash) { m_filterChainSetMode = true; std::vector stageIndexes; m_currentCenterFrequency = m_inputSampleRate * HBFilterChainConverter::convertToIndexes(log2Decim, filterChainHash, stageIndexes); m_requestedCenterFrequency = m_currentCenterFrequency; m_mutex.lock(); freeFilterChain(); setFilterChain(stageIndexes); m_mutex.unlock(); m_currentOutputSampleRate = m_inputSampleRate / (1 << m_filterStages.size()); m_requestedOutputSampleRate = m_currentOutputSampleRate; qDebug() << "DownChannelizer::applySetting inputSampleRate:" << m_inputSampleRate << " currentOutputSampleRate: " << m_currentOutputSampleRate << " currentCenterFrequency: " << m_currentCenterFrequency << " nb_filters: " << stageIndexes.size() << " nb_stages: " << m_filterStages.size(); if (m_sampleSink != 0) { MsgChannelizerNotification *notif = MsgChannelizerNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency); m_sampleSink->getInputMessageQueue()->push(notif); } } #ifdef SDR_RX_SAMPLE_24BIT DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO), m_workFunction(0), m_mode(mode), m_sse(true) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateUpperHalf; break; } } #else DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO), m_workFunction(0), m_mode(mode), m_sse(true) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO::workDecimateUpperHalf; break; } } #endif DownChannelizer::FilterStage::~FilterStage() { delete m_filter; } bool DownChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const { //qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd); if(sigEnd <= sigStart) return false; if(chanEnd <= chanStart) return false; return (sigStart <= chanStart) && (sigEnd >= chanEnd); } Real DownChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real rot = sigBw / 4; //qDebug("DownChannelizer::createFilterChain: Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot); // check if it fits into the left half if(signalContainsChannel(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd)) { //qDebug("DownChannelizer::createFilterChain: -> take left half (rotate by +1/4 and decimate by 2)"); m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } // check if it fits into the right half if(signalContainsChannel(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd)) { //qDebug("DownChannelizer::createFilterChain: -> take right half (rotate by -1/4 and decimate by 2)"); m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } // check if it fits into the center if(signalContainsChannel(sigStart + rot, sigEnd - rot, chanStart, chanEnd)) { //qDebug("DownChannelizer::createFilterChain: -> take center half (decimate by 2)"); m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd); } Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); //qDebug("DownChannelizer::createFilterChain: -> complete (final BW %.1f, frequency offset %.1f)", sigBw, ofs); return ofs; } void DownChannelizer::setFilterChain(const std::vector& stageIndexes) { // filters are described from lower to upper level but the chain is constructed the other way round std::vector::const_reverse_iterator rit = stageIndexes.rbegin(); // Each index is a base 3 number with 0 = low, 1 = center, 2 = high // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting // algorithms will go from LSD to MSD. This explains the reverse order. for (; rit != stageIndexes.rend(); ++rit) { if (*rit == 0) { m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); } else if (*rit == 1) { m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); } else if (*rit == 2) { m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); } } } void DownChannelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); } void DownChannelizer::debugFilterChain() { qDebug("DownChannelizer::debugFilterChain: %lu stages", m_filterStages.size()); for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) { switch ((*it)->m_mode) { case FilterStage::ModeCenter: qDebug("DownChannelizer::debugFilterChain: center %s", (*it)->m_sse ? "sse" : "no_sse"); break; case FilterStage::ModeLowerHalf: qDebug("DownChannelizer::debugFilterChain: lower %s", (*it)->m_sse ? "sse" : "no_sse"); break; case FilterStage::ModeUpperHalf: qDebug("DownChannelizer::debugFilterChain: upper %s", (*it)->m_sse ? "sse" : "no_sse"); break; default: qDebug("DownChannelizer::debugFilterChain: none %s", (*it)->m_sse ? "sse" : "no_sse"); break; } } }