/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/dspengine.h" #include "util/simpleserializer.h" #include "settings/serializable.h" #include "nfmdemodsettings.h" const int NFMDemodSettings::m_rfBW[] = { 5000, 6250, 8330, 10000, 12500, 15000, 20000, 25000, 40000 }; const int NFMDemodSettings::m_fmDev[] = { // corresponding single side FM deviations at 0.4 * BW 2000, 2500, 3330, 4000, 5000, 6000, 8000, 10000, 16000 }; const int NFMDemodSettings::m_nbRfBW = 9; NFMDemodSettings::NFMDemodSettings() : m_channelMarker(0) { resetToDefaults(); } void NFMDemodSettings::resetToDefaults() { m_inputFrequencyOffset = 0; m_rfBandwidth = 12500; m_afBandwidth = 3000; m_fmDeviation = 2000; m_squelchGate = 5; // 10s of ms at 48000 Hz sample rate. Corresponds to 2400 for AGC attack m_deltaSquelch = false; m_squelch = -30.0; m_volume = 1.0; m_ctcssOn = false; m_audioMute = false; m_ctcssIndex = 0; m_rgbColor = QColor(255, 0, 0).rgb(); m_title = "NFM Demodulator"; m_audioDeviceName = AudioDeviceManager::m_defaultDeviceName; m_highPass = true; m_streamIndex = 0; m_useReverseAPI = false; m_reverseAPIAddress = "127.0.0.1"; m_reverseAPIPort = 8888; m_reverseAPIDeviceIndex = 0; m_reverseAPIChannelIndex = 0; } QByteArray NFMDemodSettings::serialize() const { SimpleSerializer s(1); s.writeS32(1, m_inputFrequencyOffset); s.writeS32(2, getRFBWIndex(m_rfBandwidth)); s.writeS32(3, m_afBandwidth/1000.0); s.writeS32(4, m_volume*10.0); s.writeS32(5, static_cast(m_squelch)); s.writeBool(6, m_highPass); s.writeU32(7, m_rgbColor); s.writeS32(8, m_ctcssIndex); s.writeBool(9, m_ctcssOn); s.writeBool(10, m_audioMute); s.writeS32(11, m_squelchGate); s.writeBool(12, m_deltaSquelch); if (m_channelMarker) { s.writeBlob(13, m_channelMarker->serialize()); } s.writeString(14, m_title); s.writeString(15, m_audioDeviceName); s.writeBool(16, m_useReverseAPI); s.writeString(17, m_reverseAPIAddress); s.writeU32(18, m_reverseAPIPort); s.writeU32(19, m_reverseAPIDeviceIndex); s.writeU32(20, m_reverseAPIChannelIndex); s.writeS32(21, m_streamIndex); return s.final(); } bool NFMDemodSettings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if (!d.isValid()) { resetToDefaults(); return false; } if (d.getVersion() == 1) { QByteArray bytetmp; qint32 tmp; uint32_t utmp; if (m_channelMarker) { d.readBlob(13, &bytetmp); m_channelMarker->deserialize(bytetmp); } d.readS32(1, &tmp, 0); m_inputFrequencyOffset = tmp; d.readS32(2, &tmp, 4); m_rfBandwidth = getRFBW(tmp); m_fmDeviation = getFMDev(tmp); d.readS32(3, &tmp, 3); m_afBandwidth = tmp * 1000.0; d.readS32(4, &tmp, 20); m_volume = tmp / 10.0; d.readS32(5, &tmp, -30); m_squelch = (tmp < -100 ? tmp/10 : tmp) * 1.0; d.readBool(6, &m_highPass, true); d.readU32(7, &m_rgbColor, QColor(255, 0, 0).rgb()); d.readS32(8, &m_ctcssIndex, 0); d.readBool(9, &m_ctcssOn, false); d.readBool(10, &m_audioMute, false); d.readS32(11, &m_squelchGate, 5); d.readBool(12, &m_deltaSquelch, false); d.readString(14, &m_title, "NFM Demodulator"); d.readString(15, &m_audioDeviceName, AudioDeviceManager::m_defaultDeviceName); d.readBool(16, &m_useReverseAPI, false); d.readString(17, &m_reverseAPIAddress, "127.0.0.1"); d.readU32(18, &utmp, 0); if ((utmp > 1023) && (utmp < 65535)) { m_reverseAPIPort = utmp; } else { m_reverseAPIPort = 8888; } d.readU32(19, &utmp, 0); m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp; d.readU32(20, &utmp, 0); m_reverseAPIChannelIndex = utmp > 99 ? 99 : utmp; d.readS32(21, &m_streamIndex, 0); return true; } else { resetToDefaults(); return false; } } int NFMDemodSettings::getRFBW(int index) { if (index < 0) { return m_rfBW[0]; } else if (index < m_nbRfBW) { return m_rfBW[index]; } else { return m_rfBW[m_nbRfBW-1]; } } int NFMDemodSettings::getFMDev(int index) { if (index < 0) { return m_fmDev[0]; } else if (index < m_nbRfBW) { return m_fmDev[index]; } else { return m_fmDev[m_nbRfBW-1]; } } int NFMDemodSettings::getRFBWIndex(int rfbw) { for (int i = 0; i < m_nbRfBW; i++) { if (rfbw <= m_rfBW[i]) { return i; } } return m_nbRfBW-1; }