/** @file Connection_uLimeSDRing.cpp @author Lime Microsystems @brief Implementation of uLimeSDR board connection (streaming API) */ #include "Connection_uLimeSDR.h" #include "fifo.h" #include #include #include #include #include #include #include #include #include #include "ErrorReporting.h" using namespace lime; using namespace std; #define __unix__ /** @brief Configures FPGA PLLs to LimeLight interface frequency */ int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const double txRate, const double rxRate, const double txPhase, const double rxPhase) { const float txInterfaceClk = 2 * txRate; const float rxInterfaceClk = 2 * rxRate; int status = 0; mExpectedSampleRate = rxRate; lime::fpga::FPGA_PLL_clock clocks[4]; clocks[0].bypass = false; clocks[0].index = 0; clocks[0].outFrequency = txInterfaceClk; clocks[0].phaseShift_deg = 0; clocks[0].findPhase = false; clocks[1].bypass = false; clocks[1].index = 1; clocks[1].outFrequency = txInterfaceClk; clocks[1].findPhase = false; clocks[1].phaseShift_deg = txPhase; clocks[2].bypass = false; clocks[2].index = 2; clocks[2].outFrequency = rxInterfaceClk; clocks[2].phaseShift_deg = 0; clocks[2].findPhase = false; clocks[3].bypass = false; clocks[3].index = 3; clocks[3].outFrequency = rxInterfaceClk; clocks[3].findPhase = false; clocks[3].phaseShift_deg = rxPhase; status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4); return status; } /** @brief Configures FPGA PLLs to LimeLight interface frequency */ int Connection_uLimeSDR::UpdateExternalDataRate(const size_t channel, const double txRate_Hz, const double rxRate_Hz) { const float txInterfaceClk = 2 * txRate_Hz; const float rxInterfaceClk = 2 * rxRate_Hz; int status = 0; uint32_t reg20; const double rxPhC1[] = { 91.08, 89.46 }; const double rxPhC2[] = { -1 / 6e6, 1.24e-6 }; const double txPhC1[] = { 89.75, 89.61 }; const double txPhC2[] = { -3.0e-7, 2.71e-7 }; const std::vector spiAddr = { 0x0021, 0x0022, 0x0023, 0x0024, 0x0027, 0x002A, 0x0400, 0x040C, 0x040B, 0x0400, 0x040B, 0x0400 }; const int bakRegCnt = spiAddr.size() - 4; auto info = GetDeviceInfo(); const int addrLMS7002M = info.addrsLMS7002M.at(0); bool phaseSearch = false; //if (this->chipVersion == 0x3841) //0x3840 LMS7002Mr2, 0x3841 LMS7002Mr3 /*if (rxInterfaceClk >= 5e6 || txInterfaceClk >= 5e6) phaseSearch = true;*/ mExpectedSampleRate = rxRate_Hz; std::vector dataWr; std::vector dataRd; if (phaseSearch) { dataWr.resize(spiAddr.size()); dataRd.resize(spiAddr.size()); //backup registers dataWr[0] = (uint32_t(0x0020) << 16); TransactSPI(addrLMS7002M, dataWr.data(), ®20, 1); dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | 0xFFFD; //msbit 1=SPI write TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1); for (int i = 0; i < bakRegCnt; ++i) dataWr[i] = (spiAddr[i] << 16); TransactSPI(addrLMS7002M, dataWr.data(), dataRd.data(), bakRegCnt); } if ((txInterfaceClk >= 5e6) && (rxInterfaceClk >= 5e6)) { lime::fpga::FPGA_PLL_clock clocks[4]; clocks[0].bypass = false; clocks[0].index = 0; clocks[0].outFrequency = txInterfaceClk; clocks[0].phaseShift_deg = 0; clocks[0].findPhase = false; clocks[1].bypass = false; clocks[1].index = 1; clocks[1].outFrequency = txInterfaceClk; clocks[1].findPhase = false; if (this->chipVersion == 0x3841) clocks[1].phaseShift_deg = txPhC1[1] + txPhC2[1] * txInterfaceClk; else clocks[1].phaseShift_deg = txPhC1[0] + txPhC2[0] * txInterfaceClk; clocks[2].bypass = false; clocks[2].index = 2; clocks[2].outFrequency = rxInterfaceClk; clocks[2].phaseShift_deg = 0; clocks[2].findPhase = false; clocks[3].bypass = false; clocks[3].index = 3; clocks[3].outFrequency = rxInterfaceClk; clocks[3].findPhase = false; if (this->chipVersion == 0x3841) clocks[3].phaseShift_deg = rxPhC1[1] + rxPhC2[1] * rxInterfaceClk; else clocks[3].phaseShift_deg = rxPhC1[0] + rxPhC2[0] * rxInterfaceClk; if (phaseSearch) { { #ifndef NDEBUG printf("RX phase config:\n"); #endif clocks[3].findPhase = true; const std::vector spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4, 0xE4E4, 0x0086, 0x028D, 0x00FF, 0x5555, 0x02CD, 0xAAAA, 0x02ED }; //Load test config const int setRegCnt = spiData.size(); for (int i = 0; i < setRegCnt; ++i) dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt); status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4); } { #ifndef NDEBUG printf("TX phase config:\n"); #endif clocks[3].findPhase = false; const std::vector spiData = { 0x0E9F, 0x07FF, 0x5550, 0xE4E4, 0xE4E4, 0x0484 }; WriteRegister(0x000A, 0x0000); //Load test config const int setRegCnt = spiData.size(); for (int i = 0; i < setRegCnt; ++i) dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | spiData[i]; //msbit 1=SPI write TransactSPI(addrLMS7002M, dataWr.data(), nullptr, setRegCnt); clocks[1].findPhase = true; WriteRegister(0x000A, 0x0200); } } status = lime::fpga::SetPllFrequency(this, 0, rxInterfaceClk, clocks, 4); } else { status = lime::fpga::SetDirectClocking(this, 0, rxInterfaceClk, 90); if (status == 0) status = lime::fpga::SetDirectClocking(this, 1, rxInterfaceClk, 90); } if (phaseSearch) { //Restore registers for (int i = 0; i < bakRegCnt; ++i) dataWr[i] = (1 << 31) | (uint32_t(spiAddr[i]) << 16) | dataRd[i]; //msbit 1=SPI write TransactSPI(addrLMS7002M, dataWr.data(), nullptr, bakRegCnt); dataWr[0] = (1 << 31) | (uint32_t(0x0020) << 16) | reg20; //msbit 1=SPI write TransactSPI(addrLMS7002M, dataWr.data(), nullptr, 1); WriteRegister(0x000A, 0); } return status; } int Connection_uLimeSDR::ReadRawStreamData(char* buffer, unsigned length, int epIndex, int timeout_ms) { int totalBytesReceived = 0; fpga::StopStreaming(this, epIndex); //ResetStreamBuffers(); WriteRegister(0x0008, 0x0100 | 0x2); WriteRegister(0x0007, 1); fpga::StartStreaming(this, epIndex); int handle = BeginDataReading(buffer, length); if (WaitForReading(handle, timeout_ms)) totalBytesReceived = FinishDataReading(buffer, length, handle); AbortReading(); fpga::StopStreaming(this, epIndex); return totalBytesReceived; } int Connection_uLimeSDR::ResetStreamBuffers() { rxSize = 0; txSize = 0; #ifndef __unix__ if (FT_AbortPipe(mFTHandle, mStreamRdEndPtAddr)!=FT_OK) return -1; if (FT_AbortPipe(mFTHandle, mStreamWrEndPtAddr)!=FT_OK) return -1; if (FT_FlushPipe(mFTHandle, mStreamRdEndPtAddr)!=FT_OK) return -1; #else return FT_FlushPipe(mStreamRdEndPtAddr); #endif return 0; } /** @brief Function dedicated for receiving data samples from board @param rxFIFO FIFO to store received data @param terminate periodically pooled flag to terminate thread @param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second */ void Connection_uLimeSDR::ReceivePacketsLoop(Connection_uLimeSDR::Streamer* stream) { //at this point FPGA has to be already configured to output samples const uint8_t chCount = stream->mRxStreams.size(); const auto link =stream->mRxStreams[0]->config.linkFormat; const uint32_t samplesInPacket = (link == StreamConfig::STREAM_12_BIT_COMPRESSED ? 1360 : 1020)/chCount; const int chipID = stream->mChipID; double latency=0; for (int i = 0; i < chCount; i++) { latency += stream->mRxStreams[i]->config.performanceLatency/chCount; } const unsigned tmp_cnt = (latency * 4)+0.5; const uint8_t packetsToBatch = (1< handles(buffersCount, 0); vectorbuffers(buffersCount*bufferSize, 0); vector chFrames; try { chFrames.resize(chCount); } catch (const std::bad_alloc &ex) { ReportError("Error allocating Rx buffers, not enough memory"); return; } uint8_t activeTransfers = 0; for (int i = 0; iBeginDataReading(&buffers[i*bufferSize], bufferSize); ++activeTransfers; } int bi = 0; unsigned long totalBytesReceived = 0; //for data rate calculation int m_bufferFailures = 0; int32_t droppedSamples = 0; int32_t packetLoss = 0; vector samplesCollected(chCount, 0); vector samplesReceived(chCount, 0); auto t1 = chrono::high_resolution_clock::now(); auto t2 = chrono::high_resolution_clock::now(); std::mutex txFlagsLock; condition_variable resetTxFlags; //worker thread for reseting late Tx packet flags std::thread txReset([](ILimeSDRStreaming* port, atomic *terminate, mutex *spiLock, condition_variable *doWork) { uint32_t reg9; port->ReadRegister(0x0009, reg9); const uint32_t addr[] = {0x0009, 0x0009}; const uint32_t data[] = {reg9 | (1 << 1), reg9 & ~(1 << 1)}; while (not terminate->load()) { std::unique_lock lck(*spiLock); doWork->wait(lck); port->WriteRegisters(addr, data, 2); } }, this, &stream->terminateRx, &txFlagsLock, &resetTxFlags); int resetFlagsDelay = 128; uint64_t prevTs = 0; while (stream->terminateRx.load() == false) { if(stream->generateData.load()) { if(activeTransfers == 0) //stop FPGA when last transfer completes fpga::StopStreaming(this, chipID); stream->safeToConfigInterface.notify_all(); //notify that it's safe to change chip config const int batchSize = (this->mExpectedSampleRate/chFrames[0].samplesCount)/10; IStreamChannel::Metadata meta; for(int i=0; imRxStreams[ch]->Write((const void*)chFrames[ch].samples, chFrames[ch].samplesCount, &meta); samplesReceived[ch] += chFrames[ch].samplesCount; if(samplesPushed != chFrames[ch].samplesCount) printf("Rx samples pushed %i/%i\n", samplesPushed, chFrames[ch].samplesCount); } } this_thread::sleep_for(chrono::milliseconds(100)); } int32_t bytesReceived = 0; if(handles[bi] >= 0) { if (this->WaitForReading(handles[bi], 1000) == false) ++m_bufferFailures; bytesReceived = this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]); --activeTransfers; totalBytesReceived += bytesReceived; if (bytesReceived != int32_t(bufferSize)) //data should come in full sized packets ++m_bufferFailures; } bool txLate=false; for (uint8_t pktIndex = 0; pktIndex < bytesReceived / sizeof(FPGA_DataPacket); ++pktIndex) { const FPGA_DataPacket* pkt = (FPGA_DataPacket*)&buffers[bi*bufferSize]; const uint8_t byte0 = pkt[pktIndex].reserved[0]; if ((byte0 & (1 << 3)) != 0 && !txLate) //report only once per batch { txLate = true; if(resetFlagsDelay > 0) --resetFlagsDelay; else { printf("L"); resetTxFlags.notify_one(); resetFlagsDelay = packetsToBatch*buffersCount; stream->txLastLateTime.store(pkt[pktIndex].counter); } } uint8_t* pktStart = (uint8_t*)pkt[pktIndex].data; if(pkt[pktIndex].counter - prevTs != samplesInPacket && pkt[pktIndex].counter != prevTs) { #ifndef NDEBUG printf("\tRx pktLoss ts diff %lli\n", (long long)pkt[pktIndex].counter - prevTs); #endif packetLoss += (pkt[pktIndex].counter - prevTs)/samplesInPacket; } prevTs = pkt[pktIndex].counter; stream->rxLastTimestamp.store(pkt[pktIndex].counter); //parse samples vector dest(chCount); for(uint8_t c=0; cmRxStreams[ch]->Write((const void*)chFrames[ch].samples, samplesCount, &meta, 100); if(samplesPushed != samplesCount) droppedSamples += samplesCount-samplesPushed; } } // Re-submit this request to keep the queue full if(not stream->generateData.load()) { if(activeTransfers == 0) //reactivate FPGA and USB transfers fpga::StartStreaming(this, chipID); for(int i=0; iBeginDataReading(&buffers[bi*bufferSize], bufferSize); bi = (bi + 1) & (buffersCount-1); ++activeTransfers; } } else { handles[bi] = -1; bi = (bi + 1) & (buffersCount-1); } t2 = chrono::high_resolution_clock::now(); auto timePeriod = std::chrono::duration_cast(t2 - t1).count(); if (timePeriod >= 1000) { t1 = t2; //total number of bytes sent per second double dataRate = 1000.0*totalBytesReceived / timePeriod; #ifndef NDEBUG //each channel sample rate float samplingRate = 1000.0*samplesReceived[0] / timePeriod; printf("Rx: %.3f MB/s, Fs: %.3f MHz, overrun: %i, loss: %i \n", dataRate / 1000000.0, samplingRate / 1000000.0, droppedSamples, packetLoss); #endif samplesReceived[0] = 0; totalBytesReceived = 0; m_bufferFailures = 0; droppedSamples = 0; packetLoss = 0; stream->rxDataRate_Bps.store((uint32_t)dataRate); } } this->AbortReading(); for (int j = 0; j= 0) { this->WaitForReading(handles[bi], 1000); this->FinishDataReading(&buffers[bi*bufferSize], bufferSize, handles[bi]); } bi = (bi + 1) & (buffersCount-1); } resetTxFlags.notify_one(); txReset.join(); stream->rxDataRate_Bps.store(0); } /** @brief Functions dedicated for transmitting packets to board @param txFIFO data source FIFO @param terminate periodically pooled flag to terminate thread @param dataRate_Bps (optional) if not NULL periodically returns data rate in bytes per second */ void Connection_uLimeSDR::TransmitPacketsLoop(Streamer* stream) { //at this point FPGA has to be already configured to output samples const uint8_t maxChannelCount = 2; const uint8_t chCount = stream->mTxStreams.size(); const auto link = stream->mTxStreams[0]->config.linkFormat; double latency=0; for (int i = 0; i < chCount; i++) { latency += stream->mTxStreams[i]->config.performanceLatency/chCount; } const unsigned tmp_cnt = (latency * 4)+0.5; const uint8_t buffersCount = 16; // must be power of 2 assert(buffersCount % 2 == 0); const uint8_t packetsToBatch = (1< handles(buffersCount, 0); vector bufferUsed(buffersCount, 0); vector bytesToSend(buffersCount, 0); vector samples[maxChannelCount]; vector buffers; try { for(int i=0; iterminateTx.load() != true) { if (bufferUsed[bi]) { if (this->WaitForSending(handles[bi], 1000) == false) ++m_bufferFailures; uint32_t bytesSent = this->FinishDataSending(&buffers[bi*bufferSize], bytesToSend[bi], handles[bi]); totalBytesSent += bytesSent; if (bytesSent != bytesToSend[bi]) ++m_bufferFailures; bufferUsed[bi] = false; } int i=0; while(iterminateTx.load() != true) { IStreamChannel::Metadata meta; FPGA_DataPacket* pkt = reinterpret_cast(&buffers[bi*bufferSize]); for(int ch=0; chmTxStreams[ch]->Read(samples[ch].data(), maxSamplesBatch, &meta, popTimeout_ms); if (samplesPopped != maxSamplesBatch) { #ifndef NDEBUG printf("Warning popping from TX, samples popped %i/%i\n", samplesPopped, maxSamplesBatch); #endif } } if(stream->terminateTx.load() == true) //early termination break; pkt[i].counter = meta.timestamp; pkt[i].reserved[0] = 0; //by default ignore timestamps const int ignoreTimestamp = !(meta.flags & IStreamChannel::Metadata::SYNC_TIMESTAMP); pkt[i].reserved[0] |= ((int)ignoreTimestamp << 4); //ignore timestamp vector src(chCount); for(uint8_t c=0; cBeginDataSending(&buffers[bi*bufferSize], bytesToSend[bi]); bufferUsed[bi] = true; t2 = chrono::high_resolution_clock::now(); auto timePeriod = std::chrono::duration_cast(t2 - t1).count(); if (timePeriod >= 1000) { //total number of bytes sent per second float dataRate = 1000.0*totalBytesSent / timePeriod; stream->txDataRate_Bps.store(dataRate); m_bufferFailures = 0; samplesSent = 0; totalBytesSent = 0; t1 = t2; #ifndef NDEBUG //total number of samples from all channels per second float sampleRate = 1000.0*samplesSent / timePeriod; printf("Tx: %.3f MB/s, Fs: %.3f MHz, failures: %i\n", dataRate / 1000000.0, sampleRate / 1000000.0, m_bufferFailures); #endif } bi = (bi + 1) & (buffersCount-1); } // Wait for all the queued requests to be cancelled this->AbortSending(); for (int j = 0; jWaitForSending(handles[bi], 1000); this->FinishDataSending(&buffers[bi*bufferSize], bufferSize, handles[bi]); } bi = (bi + 1) & (buffersCount-1); } stream->txDataRate_Bps.store(0); }