///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016 Edouard Griffiths, F4EXB                                   //
//                                                                               //
// This program is free software; you can redistribute it and/or modify          //
// it under the terms of the GNU General Public License as published by          //
// the Free Software Foundation as version 3 of the License, or                  //
//                                                                               //
// This program is distributed in the hope that it will be useful,               //
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
// GNU General Public License V3 for more details.                               //
//                                                                               //
// You should have received a copy of the GNU General Public License             //
// along with this program. If not, see .          //
///////////////////////////////////////////////////////////////////////////////////
#include "ssbmod.h"
#include 
#include 
#include 
#include 
#include 
#include 
#include "SWGChannelSettings.h"
#include "SWGChannelReport.h"
#include "SWGSSBModReport.h"
#include "dsp/upchannelizer.h"
#include "dsp/dspengine.h"
#include "dsp/threadedbasebandsamplesource.h"
#include "dsp/dspcommands.h"
#include "device/devicesinkapi.h"
#include "util/db.h"
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureSSBMod, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureChannelizer, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceName, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceSeek, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgConfigureFileSourceStreamTiming, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgReportFileSourceStreamData, Message)
MESSAGE_CLASS_DEFINITION(SSBMod::MsgReportFileSourceStreamTiming, Message)
const QString SSBMod::m_channelIdURI = "sdrangel.channeltx.modssb";
const QString SSBMod::m_channelId = "SSBMod";
const int SSBMod::m_levelNbSamples = 480; // every 10ms
const int SSBMod::m_ssbFftLen = 1024;
SSBMod::SSBMod(DeviceSinkAPI *deviceAPI) :
    ChannelSourceAPI(m_channelIdURI),
    m_deviceAPI(deviceAPI),
    m_basebandSampleRate(48000),
    m_outputSampleRate(48000),
    m_inputFrequencyOffset(0),
    m_SSBFilter(0),
    m_DSBFilter(0),
	m_SSBFilterBuffer(0),
	m_DSBFilterBuffer(0),
	m_SSBFilterBufferIndex(0),
	m_DSBFilterBufferIndex(0),
    m_sampleSink(0),
    m_audioFifo(4800),
	m_settingsMutex(QMutex::Recursive),
	m_fileSize(0),
	m_recordLength(0),
	m_sampleRate(48000),
	m_levelCalcCount(0),
	m_peakLevel(0.0f),
	m_levelSum(0.0f),
	m_inAGC(9600, 0.2, 1e-4),
	m_agcStepLength(2400)
{
	setObjectName(m_channelId);
	DSPEngine::instance()->getAudioDeviceManager()->addAudioSource(&m_audioFifo, getInputMessageQueue());
    m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getInputSampleRate();
    m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_audioSampleRate, m_settings.m_bandwidth / m_audioSampleRate, m_ssbFftLen);
    m_DSBFilter = new fftfilt((2.0f * m_settings.m_bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen);
    m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
    m_DSBFilterBuffer = new Complex[m_ssbFftLen];
    std::fill(m_SSBFilterBuffer, m_SSBFilterBuffer+(m_ssbFftLen>>1), Complex{0,0});
    std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer+m_ssbFftLen, Complex{0,0});
//    memset(m_SSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen>>1));
//    memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen));
	m_audioBuffer.resize(1<<14);
	m_audioBufferFill = 0;
    m_sum.real(0.0f);
    m_sum.imag(0.0f);
    m_undersampleCount = 0;
    m_sumCount = 0;
	m_magsq = 0.0;
	m_toneNco.setFreq(1000.0, m_audioSampleRate);
	// CW keyer
	m_cwKeyer.setSampleRate(48000);
	m_cwKeyer.setWPM(13);
	m_cwKeyer.setMode(CWKeyerSettings::CWNone);
	m_inAGC.setGate(m_settings.m_agcThresholdGate);
	m_inAGC.setStepDownDelay(m_settings.m_agcThresholdDelay);
	m_inAGC.setClamping(true);
    applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true);
    applySettings(m_settings, true);
    m_channelizer = new UpChannelizer(this);
    m_threadedChannelizer = new ThreadedBasebandSampleSource(m_channelizer, this);
    m_deviceAPI->addThreadedSource(m_threadedChannelizer);
    m_deviceAPI->addChannelAPI(this);
}
SSBMod::~SSBMod()
{
    DSPEngine::instance()->getAudioDeviceManager()->removeAudioSource(&m_audioFifo);
    m_deviceAPI->removeChannelAPI(this);
    m_deviceAPI->removeThreadedSource(m_threadedChannelizer);
    delete m_threadedChannelizer;
    delete m_channelizer;
    delete m_SSBFilter;
    delete m_DSBFilter;
    delete[] m_SSBFilterBuffer;
    delete[] m_DSBFilterBuffer;
}
void SSBMod::pull(Sample& sample)
{
	Complex ci;
	m_settingsMutex.lock();
    if (m_interpolatorDistance > 1.0f) // decimate
    {
    	modulateSample();
        while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
        {
        	modulateSample();
        }
    }
    else
    {
        if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
        {
        	modulateSample();
        }
    }
    m_interpolatorDistanceRemain += m_interpolatorDistance;
    ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
    ci *= 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
    m_settingsMutex.unlock();
    double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
	magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
	m_movingAverage(magsq);
	m_magsq = m_movingAverage.asDouble();
	sample.m_real = (FixReal) ci.real();
	sample.m_imag = (FixReal) ci.imag();
}
void SSBMod::pullAudio(int nbSamples)
{
    unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_basebandSampleRate);
    if (nbSamplesAudio > m_audioBuffer.size())
    {
        m_audioBuffer.resize(nbSamplesAudio);
    }
    m_audioFifo.read(reinterpret_cast(&m_audioBuffer[0]), nbSamplesAudio);
    m_audioBufferFill = 0;
}
void SSBMod::modulateSample()
{
    pullAF(m_modSample);
    calculateLevel(m_modSample);
    m_audioBufferFill++;
}
void SSBMod::pullAF(Complex& sample)
{
	if (m_settings.m_audioMute)
	{
        sample.real(0.0f);
        sample.imag(0.0f);
        return;
	}
    Complex ci;
    fftfilt::cmplx *filtered;
    int n_out = 0;
    int decim = 1<<(m_settings.m_spanLog2 - 1);
    unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
    switch (m_settings.m_modAFInput)
    {
    case SSBModSettings::SSBModInputTone:
    	if (m_settings.m_dsb)
    	{
    		Real t = m_toneNco.next()/1.25;
    		sample.real(t);
    		sample.imag(t);
    	}
    	else
    	{
    		if (m_settings.m_usb) {
    			sample = m_toneNco.nextIQ();
    		} else {
    			sample = m_toneNco.nextQI();
    		}
    	}
        break;
    case SSBModSettings::SSBModInputFile:
    	// Monaural (mono):
        // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw
        // ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw
    	// Binaural (stereo):
        // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw
        // ffplay -f f32le -ar 48k -ac 2 f4exb_call.raw
        if (m_ifstream.is_open())
        {
            if (m_ifstream.eof())
            {
            	if (m_settings.m_playLoop)
            	{
                    m_ifstream.clear();
                    m_ifstream.seekg(0, std::ios::beg);
            	}
            }
            if (m_ifstream.eof())
            {
                ci.real(0.0f);
                ci.imag(0.0f);
            }
            else
            {
            	if (m_settings.m_audioBinaural)
            	{
            		Complex c;
                	m_ifstream.read(reinterpret_cast(&c), sizeof(Complex));
                	if (m_settings.m_audioFlipChannels)
                	{
                        ci.real(c.imag() * m_settings.m_volumeFactor);
                        ci.imag(c.real() * m_settings.m_volumeFactor);
                	}
                	else
                	{
                    	ci = c * m_settings.m_volumeFactor;
                	}
            	}
            	else
            	{
                    Real real;
                	m_ifstream.read(reinterpret_cast(&real), sizeof(Real));
                	if (m_settings.m_agc)
                	{
                        ci.real(real);
                        ci.imag(0.0f);
                        m_inAGC.feed(ci);
                        ci *= m_settings.m_volumeFactor;
                	}
                	else
                	{
                        ci.real(real * m_settings.m_volumeFactor);
                        ci.imag(0.0f);
                	}
            	}
            }
        }
        else
        {
            ci.real(0.0f);
            ci.imag(0.0f);
        }
        break;
    case SSBModSettings::SSBModInputAudio:
        if (m_settings.m_audioBinaural)
    	{
        	if (m_settings.m_audioFlipChannels)
        	{
                ci.real((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
                ci.imag((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
        	}
        	else
        	{
                ci.real((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
                ci.imag((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
        	}
    	}
        else
        {
            if (m_settings.m_agc)
            {
                ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r)  / 65536.0f));
                ci.imag(0.0f);
                m_inAGC.feed(ci);
                ci *= m_settings.m_volumeFactor;
            }
            else
            {
                ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r)  / 65536.0f) * m_settings.m_volumeFactor);
                ci.imag(0.0f);
            }
        }
        break;
    case SSBModSettings::SSBModInputCWTone:
    	Real fadeFactor;
        if (m_cwKeyer.getSample())
        {
            m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor);
        	if (m_settings.m_dsb)
        	{
        		Real t = m_toneNco.next() * fadeFactor;
        		sample.real(t);
        		sample.imag(t);
        	}
        	else
        	{
        		if (m_settings.m_usb) {
        			sample = m_toneNco.nextIQ() * fadeFactor;
        		} else {
        			sample = m_toneNco.nextQI() * fadeFactor;
        		}
        	}
        }
        else
        {
        	if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor))
        	{
            	if (m_settings.m_dsb)
            	{
            		Real t = (m_toneNco.next() * fadeFactor)/1.25;
            		sample.real(t);
            		sample.imag(t);
            	}
            	else
            	{
            		if (m_settings.m_usb) {
            			sample = m_toneNco.nextIQ() * fadeFactor;
            		} else {
            			sample = m_toneNco.nextQI() * fadeFactor;
            		}
            	}
        	}
        	else
        	{
                sample.real(0.0f);
                sample.imag(0.0f);
                m_toneNco.setPhase(0);
        	}
        }
        break;
    case SSBModSettings::SSBModInputNone:
    default:
        sample.real(0.0f);
        sample.imag(0.0f);
        break;
    }
    if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputFile)
       || (m_settings.m_modAFInput == SSBModSettings::SSBModInputAudio)) // real audio
    {
    	if (m_settings.m_dsb)
    	{
    		n_out = m_DSBFilter->runDSB(ci, &filtered);
    		if (n_out > 0)
    		{
    			memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
    			m_DSBFilterBufferIndex = 0;
    		}
    		sample = m_DSBFilterBuffer[m_DSBFilterBufferIndex];
    		m_DSBFilterBufferIndex++;
    	}
    	else
    	{
    		n_out = m_SSBFilter->runSSB(ci, &filtered, m_settings.m_usb);
    		if (n_out > 0)
    		{
    			memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
    			m_SSBFilterBufferIndex = 0;
    		}
    		sample = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
    		m_SSBFilterBufferIndex++;
    	}
    	if (n_out > 0)
    	{
            for (int i = 0; i < n_out; i++)
            {
                // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
                // smart decimation with bit gain using float arithmetic (23 bits significand)
                m_sum += filtered[i];
                if (!(m_undersampleCount++ & decim_mask))
                {
                    Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
                    Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF;
                    if (!m_settings.m_dsb & !m_settings.m_usb)
                    { // invert spectrum for LSB
                        m_sampleBuffer.push_back(Sample(avgi, avgr));
                    }
                    else
                    {
                        m_sampleBuffer.push_back(Sample(avgr, avgi));
                    }
                    m_sum.real(0.0);
                    m_sum.imag(0.0);
                }
            }
    	}
    } // Real audio
    else if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputTone)
          || (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone)) // tone
    {
        m_sum += sample;
        if (!(m_undersampleCount++ & decim_mask))
        {
            Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
            Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF;
            if (!m_settings.m_dsb & !m_settings.m_usb)
            { // invert spectrum for LSB
                m_sampleBuffer.push_back(Sample(avgi, avgr));
            }
            else
            {
                m_sampleBuffer.push_back(Sample(avgr, avgi));
            }
            m_sum.real(0.0);
            m_sum.imag(0.0);
        }
        if (m_sumCount < (m_settings.m_dsb ? m_ssbFftLen : m_ssbFftLen>>1))
        {
            n_out = 0;
            m_sumCount++;
        }
        else
        {
            n_out = m_sumCount;
            m_sumCount = 0;
        }
    }
    if (n_out > 0)
    {
        if (m_sampleSink != 0)
        {
            m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
        }
        m_sampleBuffer.clear();
    }
}
void SSBMod::calculateLevel(Complex& sample)
{
    Real t = sample.real(); // TODO: possibly adjust depending on sample type
    if (m_levelCalcCount < m_levelNbSamples)
    {
        m_peakLevel = std::max(std::fabs(m_peakLevel), t);
        m_levelSum += t * t;
        m_levelCalcCount++;
    }
    else
    {
        qreal rmsLevel = sqrt(m_levelSum / m_levelNbSamples);
        //qDebug("NFMMod::calculateLevel: %f %f", rmsLevel, m_peakLevel);
        emit levelChanged(rmsLevel, m_peakLevel, m_levelNbSamples);
        m_peakLevel = 0.0f;
        m_levelSum = 0.0f;
        m_levelCalcCount = 0;
    }
}
void SSBMod::start()
{
	qDebug() << "SSBMod::start: m_outputSampleRate: " << m_outputSampleRate
			<< " m_inputFrequencyOffset: " << m_settings.m_inputFrequencyOffset;
	m_audioFifo.clear();
	applyChannelSettings(m_basebandSampleRate, m_outputSampleRate, m_inputFrequencyOffset, true);
}
void SSBMod::stop()
{
}
bool SSBMod::handleMessage(const Message& cmd)
{
	if (UpChannelizer::MsgChannelizerNotification::match(cmd))
	{
		UpChannelizer::MsgChannelizerNotification& notif = (UpChannelizer::MsgChannelizerNotification&) cmd;
		qDebug() << "SSBMod::handleMessage: MsgChannelizerNotification";
		applyChannelSettings(notif.getBasebandSampleRate(), notif.getSampleRate(), notif.getFrequencyOffset());
		return true;
	}
    else if (MsgConfigureChannelizer::match(cmd))
    {
        MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd;
        qDebug() << "SSBMod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate()
                << " centerFrequency: " << cfg.getCenterFrequency();
        m_channelizer->configure(m_channelizer->getInputMessageQueue(),
            cfg.getSampleRate(),
            cfg.getCenterFrequency());
        return true;
    }
    else if (MsgConfigureSSBMod::match(cmd))
    {
        MsgConfigureSSBMod& cfg = (MsgConfigureSSBMod&) cmd;
        qDebug() << "SSBMod::handleMessage: MsgConfigureSSBMod";
        applySettings(cfg.getSettings(), cfg.getForce());
        return true;
    }
	else if (MsgConfigureFileSourceName::match(cmd))
    {
        MsgConfigureFileSourceName& conf = (MsgConfigureFileSourceName&) cmd;
        m_fileName = conf.getFileName();
        openFileStream();
        return true;
    }
    else if (MsgConfigureFileSourceSeek::match(cmd))
    {
        MsgConfigureFileSourceSeek& conf = (MsgConfigureFileSourceSeek&) cmd;
        int seekPercentage = conf.getPercentage();
        seekFileStream(seekPercentage);
        return true;
    }
    else if (MsgConfigureFileSourceStreamTiming::match(cmd))
    {
    	std::size_t samplesCount;
    	if (m_ifstream.eof()) {
    		samplesCount = m_fileSize / sizeof(Real);
    	} else {
    		samplesCount = m_ifstream.tellg() / sizeof(Real);
    	}
        if (getMessageQueueToGUI())
        {
            MsgReportFileSourceStreamTiming *report;
            report = MsgReportFileSourceStreamTiming::create(samplesCount);
            getMessageQueueToGUI()->push(report);
        }
        return true;
    }
    else if (DSPConfigureAudio::match(cmd))
    {
        DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd;
        uint32_t sampleRate = cfg.getSampleRate();
        qDebug() << "SSBMod::handleMessage: DSPConfigureAudio:"
                << " sampleRate: " << sampleRate;
        if (sampleRate != m_audioSampleRate) {
            applyAudioSampleRate(sampleRate);
        }
        return true;
    }
    else if (DSPSignalNotification::match(cmd))
    {
        return true;
    }
	else
	{
		return false;
	}
}
void SSBMod::openFileStream()
{
    if (m_ifstream.is_open()) {
        m_ifstream.close();
    }
    m_ifstream.open(m_fileName.toStdString().c_str(), std::ios::binary | std::ios::ate);
    m_fileSize = m_ifstream.tellg();
    m_ifstream.seekg(0,std::ios_base::beg);
    m_sampleRate = 48000; // fixed rate
    m_recordLength = m_fileSize / (sizeof(Real) * m_sampleRate);
    qDebug() << "SSBMod::openFileStream: " << m_fileName.toStdString().c_str()
            << " fileSize: " << m_fileSize << "bytes"
            << " length: " << m_recordLength << " seconds";
    if (getMessageQueueToGUI())
    {
        MsgReportFileSourceStreamData *report;
        report = MsgReportFileSourceStreamData::create(m_sampleRate, m_recordLength);
        getMessageQueueToGUI()->push(report);
    }
}
void SSBMod::seekFileStream(int seekPercentage)
{
    QMutexLocker mutexLocker(&m_settingsMutex);
    if (m_ifstream.is_open())
    {
        int seekPoint = ((m_recordLength * seekPercentage) / 100) * m_sampleRate;
        seekPoint *= sizeof(Real);
        m_ifstream.clear();
        m_ifstream.seekg(seekPoint, std::ios::beg);
    }
}
void SSBMod::applyAudioSampleRate(int sampleRate)
{
    qDebug("SSBMod::applyAudioSampleRate: %d", sampleRate);
    MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create(
            sampleRate, m_settings.m_inputFrequencyOffset);
    m_inputMessageQueue.push(channelConfigMsg);
    m_settingsMutex.lock();
    m_interpolatorDistanceRemain = 0;
    m_interpolatorConsumed = false;
    m_interpolatorDistance = (Real) sampleRate / (Real) m_outputSampleRate;
    m_interpolator.create(48, sampleRate, m_settings.m_bandwidth, 3.0);
    float band = m_settings.m_bandwidth;
    float lowCutoff = m_settings.m_lowCutoff;
    bool usb = m_settings.m_usb;
    if (band < 0) // negative means LSB
    {
        band = -band;            // turn to positive
        lowCutoff = -lowCutoff;
        usb = false;  // and take note of side band
    }
    else
    {
        usb = true;
    }
    if (band < 100.0f) // at least 100 Hz
    {
        band = 100.0f;
        lowCutoff = 0;
    }
    if (band - lowCutoff < 100.0f) {
        lowCutoff = band - 100.0f;
    }
    m_SSBFilter->create_filter(lowCutoff / sampleRate, band / sampleRate);
    m_DSBFilter->create_dsb_filter((2.0f * band) / sampleRate);
    m_settings.m_bandwidth = band;
    m_settings.m_lowCutoff = lowCutoff;
    m_settings.m_usb = usb;
    m_toneNco.setFreq(m_settings.m_toneFrequency, sampleRate);
    m_cwKeyer.setSampleRate(sampleRate);
    m_agcStepLength = std::min(sampleRate/20, m_settings.m_agcTime/2); // 50 ms or half the AGC length whichever is smaller
    m_settingsMutex.unlock();
    m_audioSampleRate = sampleRate;
    if (getMessageQueueToGUI())
    {
        DSPConfigureAudio *cfg = new DSPConfigureAudio(m_audioSampleRate);
        getMessageQueueToGUI()->push(cfg);
    }
}
void SSBMod::applyChannelSettings(int basebandSampleRate, int outputSampleRate, int inputFrequencyOffset, bool force)
{
    qDebug() << "SSBMod::applyChannelSettings:"
            << " basebandSampleRate: " << basebandSampleRate
            << " outputSampleRate: " << outputSampleRate
            << " inputFrequencyOffset: " << inputFrequencyOffset;
    if ((inputFrequencyOffset != m_inputFrequencyOffset) ||
        (outputSampleRate != m_outputSampleRate) || force)
    {
        m_settingsMutex.lock();
        m_carrierNco.setFreq(inputFrequencyOffset, outputSampleRate);
        m_settingsMutex.unlock();
    }
    if ((outputSampleRate != m_outputSampleRate) || force)
    {
        m_settingsMutex.lock();
        m_interpolatorDistanceRemain = 0;
        m_interpolatorConsumed = false;
        m_interpolatorDistance = (Real) m_audioSampleRate / (Real) outputSampleRate;
        m_interpolator.create(48, m_audioSampleRate, m_settings.m_bandwidth, 3.0);
        m_settingsMutex.unlock();
    }
    m_basebandSampleRate = basebandSampleRate;
    m_outputSampleRate = outputSampleRate;
    m_inputFrequencyOffset = inputFrequencyOffset;
}
void SSBMod::applySettings(const SSBModSettings& settings, bool force)
{
    float band = settings.m_bandwidth;
    float lowCutoff = settings.m_lowCutoff;
    bool usb = settings.m_usb;
    if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
        (settings.m_lowCutoff != m_settings.m_lowCutoff) || force)
    {
        if (band < 0) // negative means LSB
        {
            band = -band;            // turn to positive
            lowCutoff = -lowCutoff;
            usb = false;  // and take note of side band
        }
        else
        {
            usb = true;
        }
        if (band < 100.0f) // at least 100 Hz
        {
            band = 100.0f;
            lowCutoff = 0;
        }
        if (band - lowCutoff < 100.0f) {
            lowCutoff = band - 100.0f;
        }
        m_settingsMutex.lock();
        m_interpolatorDistanceRemain = 0;
        m_interpolatorConsumed = false;
        m_interpolatorDistance = (Real) m_audioSampleRate / (Real) m_outputSampleRate;
        m_interpolator.create(48, m_audioSampleRate, band, 3.0);
        m_SSBFilter->create_filter(lowCutoff / m_audioSampleRate, band / m_audioSampleRate);
        m_DSBFilter->create_dsb_filter((2.0f * band) / m_audioSampleRate);
        m_settingsMutex.unlock();
    }
    if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force)
    {
        m_settingsMutex.lock();
        m_toneNco.setFreq(settings.m_toneFrequency, m_audioSampleRate);
        m_settingsMutex.unlock();
    }
    if ((settings.m_dsb != m_settings.m_dsb) || force)
    {
        if (settings.m_dsb)
        {
            std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer+m_ssbFftLen, Complex{0,0});
            //memset(m_DSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen));
            m_DSBFilterBufferIndex = 0;
        }
        else
        {
            std::fill(m_SSBFilterBuffer, m_SSBFilterBuffer+(m_ssbFftLen>>1), Complex{0,0});
            //memset(m_SSBFilterBuffer, 0, sizeof(Complex)*(m_ssbFftLen>>1));
            m_SSBFilterBufferIndex = 0;
        }
    }
    if ((settings.m_agcTime != m_settings.m_agcTime) ||
        (settings.m_agcOrder != m_settings.m_agcOrder) || force)
    {
        m_settingsMutex.lock();
        m_inAGC.resize(settings.m_agcTime, m_agcStepLength, settings.m_agcOrder);
        m_settingsMutex.unlock();
    }
    if ((settings.m_agcThresholdEnable != m_settings.m_agcThresholdEnable) || force)
    {
        m_inAGC.setThresholdEnable(settings.m_agcThresholdEnable);
    }
    if ((settings.m_agcThreshold != m_settings.m_agcThreshold) || force)
    {
        m_inAGC.setThreshold(settings.m_agcThreshold);
    }
    if ((settings.m_agcThresholdGate != m_settings.m_agcThresholdGate) || force)
    {
        m_inAGC.setGate(settings.m_agcThresholdGate);
    }
    if ((settings.m_agcThresholdDelay != m_settings.m_agcThresholdDelay) || force)
    {
        m_inAGC.setStepDownDelay(settings.m_agcThresholdDelay);
    }
    if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force)
    {
        AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager();
        int audioDeviceIndex = audioDeviceManager->getInputDeviceIndex(settings.m_audioDeviceName);
        audioDeviceManager->addAudioSource(&m_audioFifo, getInputMessageQueue(), audioDeviceIndex);
        uint32_t audioSampleRate = audioDeviceManager->getInputSampleRate(audioDeviceIndex);
        if (m_audioSampleRate != audioSampleRate) {
            applyAudioSampleRate(audioSampleRate);
        }
    }
    m_settings = settings;
    m_settings.m_bandwidth = band;
    m_settings.m_lowCutoff = lowCutoff;
    m_settings.m_usb = usb;
}
QByteArray SSBMod::serialize() const
{
    return m_settings.serialize();
}
bool SSBMod::deserialize(const QByteArray& data)
{
    if (m_settings.deserialize(data))
    {
        MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(m_settings, true);
        m_inputMessageQueue.push(msg);
        return true;
    }
    else
    {
        m_settings.resetToDefaults();
        MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(m_settings, true);
        m_inputMessageQueue.push(msg);
        return false;
    }
}
int SSBMod::webapiSettingsGet(
        SWGSDRangel::SWGChannelSettings& response,
        QString& errorMessage __attribute__((unused)))
{
    response.setSsbModSettings(new SWGSDRangel::SWGSSBModSettings());
    response.getSsbModSettings()->init();
    webapiFormatChannelSettings(response, m_settings);
    return 200;
}
int SSBMod::webapiSettingsPutPatch(
                bool force,
                const QStringList& channelSettingsKeys,
                SWGSDRangel::SWGChannelSettings& response,
                QString& errorMessage __attribute__((unused)))
{
    SSBModSettings settings = m_settings;
    bool frequencyOffsetChanged = false;
    if (channelSettingsKeys.contains("inputFrequencyOffset"))
    {
        settings.m_inputFrequencyOffset = response.getSsbModSettings()->getInputFrequencyOffset();
        frequencyOffsetChanged = true;
    }
    if (channelSettingsKeys.contains("bandwidth")) {
        settings.m_bandwidth = response.getSsbModSettings()->getBandwidth();
    }
    if (channelSettingsKeys.contains("lowCutoff")) {
        settings.m_lowCutoff = response.getSsbModSettings()->getLowCutoff();
    }
    if (channelSettingsKeys.contains("usb")) {
        settings.m_usb = response.getSsbModSettings()->getUsb() != 0;
    }
    if (channelSettingsKeys.contains("toneFrequency")) {
        settings.m_toneFrequency = response.getSsbModSettings()->getToneFrequency();
    }
    if (channelSettingsKeys.contains("volumeFactor")) {
        settings.m_volumeFactor = response.getSsbModSettings()->getVolumeFactor();
    }
    if (channelSettingsKeys.contains("spanLog2")) {
        settings.m_spanLog2 = response.getSsbModSettings()->getSpanLog2();
    }
    if (channelSettingsKeys.contains("audioBinaural")) {
        settings.m_audioBinaural = response.getSsbModSettings()->getAudioBinaural() != 0;
    }
    if (channelSettingsKeys.contains("audioFlipChannels")) {
        settings.m_audioFlipChannels = response.getSsbModSettings()->getAudioFlipChannels() != 0;
    }
    if (channelSettingsKeys.contains("dsb")) {
        settings.m_dsb = response.getSsbModSettings()->getDsb() != 0;
    }
    if (channelSettingsKeys.contains("audioMute")) {
        settings.m_audioMute = response.getSsbModSettings()->getAudioMute() != 0;
    }
    if (channelSettingsKeys.contains("playLoop")) {
        settings.m_playLoop = response.getSsbModSettings()->getPlayLoop() != 0;
    }
    if (channelSettingsKeys.contains("agc")) {
        settings.m_agc = response.getSsbModSettings()->getAgc() != 0;
    }
    if (channelSettingsKeys.contains("agcOrder")) {
        settings.m_agcOrder = response.getSsbModSettings()->getAgcOrder();
    }
    if (channelSettingsKeys.contains("agcTime")) {
        settings.m_agcTime = response.getSsbModSettings()->getAgcTime();
    }
    if (channelSettingsKeys.contains("agcThresholdEnable")) {
        settings.m_agcThresholdEnable = response.getSsbModSettings()->getAgcThresholdEnable() != 0;
    }
    if (channelSettingsKeys.contains("agcThreshold")) {
        settings.m_agcThreshold = response.getSsbModSettings()->getAgcThreshold();
    }
    if (channelSettingsKeys.contains("agcThresholdGate")) {
        settings.m_agcThresholdGate = response.getSsbModSettings()->getAgcThresholdGate();
    }
    if (channelSettingsKeys.contains("agcThresholdDelay")) {
        settings.m_agcThresholdDelay = response.getSsbModSettings()->getAgcThresholdDelay();
    }
    if (channelSettingsKeys.contains("rgbColor")) {
        settings.m_rgbColor = response.getSsbModSettings()->getRgbColor();
    }
    if (channelSettingsKeys.contains("title")) {
        settings.m_title = *response.getSsbModSettings()->getTitle();
    }
    if (channelSettingsKeys.contains("modAFInput")) {
        settings.m_modAFInput = (SSBModSettings::SSBModInputAF) response.getSsbModSettings()->getModAfInput();
    }
    if (channelSettingsKeys.contains("audioDeviceName")) {
        settings.m_audioDeviceName = *response.getSsbModSettings()->getAudioDeviceName();
    }
    if (channelSettingsKeys.contains("cwKeyer"))
    {
        SWGSDRangel::SWGCWKeyerSettings *apiCwKeyerSettings = response.getSsbModSettings()->getCwKeyer();
        CWKeyerSettings cwKeyerSettings = m_cwKeyer.getSettings();
        if (channelSettingsKeys.contains("cwKeyer.loop")) {
            cwKeyerSettings.m_loop = apiCwKeyerSettings->getLoop() != 0;
        }
        if (channelSettingsKeys.contains("cwKeyer.mode")) {
            cwKeyerSettings.m_mode = (CWKeyerSettings::CWMode) apiCwKeyerSettings->getMode();
        }
        if (channelSettingsKeys.contains("cwKeyer.text")) {
            cwKeyerSettings.m_text = *apiCwKeyerSettings->getText();
        }
        if (channelSettingsKeys.contains("cwKeyer.sampleRate")) {
            cwKeyerSettings.m_sampleRate = apiCwKeyerSettings->getSampleRate();
        }
        if (channelSettingsKeys.contains("cwKeyer.wpm")) {
            cwKeyerSettings.m_wpm = apiCwKeyerSettings->getWpm();
        }
        m_cwKeyer.setLoop(cwKeyerSettings.m_loop);
        m_cwKeyer.setMode(cwKeyerSettings.m_mode);
        m_cwKeyer.setSampleRate(cwKeyerSettings.m_sampleRate);
        m_cwKeyer.setText(cwKeyerSettings.m_text);
        m_cwKeyer.setWPM(cwKeyerSettings.m_wpm);
        if (m_guiMessageQueue) // forward to GUI if any
        {
            CWKeyer::MsgConfigureCWKeyer *msgCwKeyer = CWKeyer::MsgConfigureCWKeyer::create(cwKeyerSettings, force);
            m_guiMessageQueue->push(msgCwKeyer);
        }
    }
    if (frequencyOffsetChanged)
    {
        SSBMod::MsgConfigureChannelizer *msgChan = SSBMod::MsgConfigureChannelizer::create(
                m_audioSampleRate, settings.m_inputFrequencyOffset);
        m_inputMessageQueue.push(msgChan);
    }
    MsgConfigureSSBMod *msg = MsgConfigureSSBMod::create(settings, force);
    m_inputMessageQueue.push(msg);
    if (m_guiMessageQueue) // forward to GUI if any
    {
        MsgConfigureSSBMod *msgToGUI = MsgConfigureSSBMod::create(settings, force);
        m_guiMessageQueue->push(msgToGUI);
    }
    webapiFormatChannelSettings(response, settings);
    return 200;
}
int SSBMod::webapiReportGet(
        SWGSDRangel::SWGChannelReport& response,
        QString& errorMessage __attribute__((unused)))
{
    response.setSsbModReport(new SWGSDRangel::SWGSSBModReport());
    response.getSsbModReport()->init();
    webapiFormatChannelReport(response);
    return 200;
}
void SSBMod::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const SSBModSettings& settings)
{
    response.getSsbModSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset);
    response.getSsbModSettings()->setBandwidth(settings.m_bandwidth);
    response.getSsbModSettings()->setLowCutoff(settings.m_lowCutoff);
    response.getSsbModSettings()->setUsb(settings.m_usb ? 1 : 0);
    response.getSsbModSettings()->setToneFrequency(settings.m_toneFrequency);
    response.getSsbModSettings()->setVolumeFactor(settings.m_volumeFactor);
    response.getSsbModSettings()->setSpanLog2(settings.m_spanLog2);
    response.getSsbModSettings()->setAudioBinaural(settings.m_audioBinaural ? 1 : 0);
    response.getSsbModSettings()->setAudioFlipChannels(settings.m_audioFlipChannels ? 1 : 0);
    response.getSsbModSettings()->setDsb(settings.m_dsb ? 1 : 0);
    response.getSsbModSettings()->setAudioMute(settings.m_audioMute ? 1 : 0);
    response.getSsbModSettings()->setPlayLoop(settings.m_playLoop ? 1 : 0);
    response.getSsbModSettings()->setAgc(settings.m_agc ? 1 : 0);
    response.getSsbModSettings()->setAgcOrder(settings.m_agcOrder);
    response.getSsbModSettings()->setAgcTime(settings.m_agcTime);
    response.getSsbModSettings()->setAgcThresholdEnable(settings.m_agcThresholdEnable ? 1 : 0);
    response.getSsbModSettings()->setAgcThreshold(settings.m_agcThreshold);
    response.getSsbModSettings()->setAgcThresholdGate(settings.m_agcThresholdGate);
    response.getSsbModSettings()->setAgcThresholdDelay(settings.m_agcThresholdDelay);
    response.getSsbModSettings()->setRgbColor(settings.m_rgbColor);
    if (response.getSsbModSettings()->getTitle()) {
        *response.getSsbModSettings()->getTitle() = settings.m_title;
    } else {
        response.getSsbModSettings()->setTitle(new QString(settings.m_title));
    }
    response.getSsbModSettings()->setModAfInput((int) settings.m_modAFInput);
    if (response.getSsbModSettings()->getAudioDeviceName()) {
        *response.getSsbModSettings()->getAudioDeviceName() = settings.m_audioDeviceName;
    } else {
        response.getSsbModSettings()->setAudioDeviceName(new QString(settings.m_audioDeviceName));
    }
    if (!response.getSsbModSettings()->getCwKeyer()) {
        response.getSsbModSettings()->setCwKeyer(new SWGSDRangel::SWGCWKeyerSettings);
    }
    SWGSDRangel::SWGCWKeyerSettings *apiCwKeyerSettings = response.getSsbModSettings()->getCwKeyer();
    const CWKeyerSettings& cwKeyerSettings = m_cwKeyer.getSettings();
    apiCwKeyerSettings->setLoop(cwKeyerSettings.m_loop ? 1 : 0);
    apiCwKeyerSettings->setMode((int) cwKeyerSettings.m_mode);
    apiCwKeyerSettings->setSampleRate(cwKeyerSettings.m_sampleRate);
    if (apiCwKeyerSettings->getText()) {
        *apiCwKeyerSettings->getText() = cwKeyerSettings.m_text;
    } else {
        apiCwKeyerSettings->setText(new QString(cwKeyerSettings.m_text));
    }
    apiCwKeyerSettings->setWpm(cwKeyerSettings.m_wpm);
}
void SSBMod::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response)
{
    response.getSsbModReport()->setChannelPowerDb(CalcDb::dbPower(getMagSq()));
    response.getSsbModReport()->setAudioSampleRate(m_audioSampleRate);
    response.getSsbModReport()->setChannelSampleRate(m_outputSampleRate);
}