/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "SWGChannelSettings.h" #include "SWGNFMDemodSettings.h" #include "SWGChannelReport.h" #include "SWGNFMDemodReport.h" #include "dsp/downchannelizer.h" #include "util/stepfunctions.h" #include "util/db.h" #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/dspcommands.h" #include "device/deviceapi.h" #include "nfmdemod.h" MESSAGE_CLASS_DEFINITION(NFMDemod::MsgConfigureNFMDemod, Message) MESSAGE_CLASS_DEFINITION(NFMDemod::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(NFMDemod::MsgReportCTCSSFreq, Message) const QString NFMDemod::m_channelIdURI = "sdrangel.channel.nfmdemod"; const QString NFMDemod::m_channelId = "NFMDemod"; static const double afSqTones[2] = {1000.0, 6000.0}; // {1200.0, 8000.0}; static const double afSqTones_lowrate[2] = {1000.0, 3500.0}; const int NFMDemod::m_udpBlockSize = 512; NFMDemod::NFMDemod(DeviceAPI *devieAPI) : ChannelAPI(m_channelIdURI, ChannelAPI::StreamSingleSink), m_deviceAPI(devieAPI), m_inputSampleRate(48000), m_inputFrequencyOffset(0), m_running(false), m_ctcssIndex(0), m_sampleCount(0), m_squelchCount(0), m_squelchGate(4800), m_squelchLevel(-990), m_squelchOpen(false), m_afSquelchOpen(false), m_magsq(0.0f), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_afSquelch(), m_squelchDelayLine(24000), m_audioFifo(48000), m_settingsMutex(QMutex::Recursive) { qDebug("NFMDemod::NFMDemod"); setObjectName(m_channelId); m_audioBuffer.resize(1<<14); m_audioBufferFill = 0; m_agcLevel = 1.0; DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo, getInputMessageQueue()); m_audioSampleRate = DSPEngine::instance()->getAudioDeviceManager()->getOutputSampleRate(); m_discriCompensation = (m_audioSampleRate/48000.0f); m_discriCompensation *= sqrt(m_discriCompensation); m_ctcssDetector.setCoefficients(m_audioSampleRate/16, m_audioSampleRate/8.0f); // 0.5s / 2 Hz resolution m_afSquelch.setCoefficients(m_audioSampleRate/2000, 600, m_audioSampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay m_lowpass.create(301, m_audioSampleRate, 250.0); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addChannelSink(m_threadedChannelizer); m_deviceAPI->addChannelSinkAPI(this); m_networkManager = new QNetworkAccessManager(); connect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*))); } NFMDemod::~NFMDemod() { disconnect(m_networkManager, SIGNAL(finished(QNetworkReply*)), this, SLOT(networkManagerFinished(QNetworkReply*))); delete m_networkManager; DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo); m_deviceAPI->removeChannelSinkAPI(this); m_deviceAPI->removeChannelSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; } float arctan2(Real y, Real x) { Real coeff_1 = M_PI / 4; Real coeff_2 = 3 * coeff_1; Real abs_y = fabs(y) + 1e-10; // kludge to prevent 0/0 condition Real angle; if( x>= 0) { Real r = (x - abs_y) / (x + abs_y); angle = coeff_1 - coeff_1 * r; } else { Real r = (x + abs_y) / (abs_y - x); angle = coeff_2 - coeff_1 * r; } if(y < 0) { return(-angle); } else { return(angle); } } Real angleDist(Real a, Real b) { Real dist = b - a; while(dist <= M_PI) dist += 2 * M_PI; while(dist >= M_PI) dist -= 2 * M_PI; return dist; } void NFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst) { (void) firstOfBurst; Complex ci; if (!m_running) { return; } m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { qint16 sample; double magsqRaw; // = ci.real()*ci.real() + c.imag()*c.imag(); Real deviation; Real demod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation); Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED); m_movingAverage(magsq); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; m_sampleCount++; // AF processing if (m_settings.m_deltaSquelch) { if (m_afSquelch.analyze(demod * m_discriCompensation)) { m_afSquelchOpen = m_afSquelch.evaluate(); // ? m_squelchGate + m_squelchDecay : 0; if (!m_afSquelchOpen) { m_squelchDelayLine.zeroBack(m_audioSampleRate/10); // zero out evaluation period } } if (m_afSquelchOpen) { m_squelchDelayLine.write(demod * m_discriCompensation); if (m_squelchCount < 2*m_squelchGate) { m_squelchCount++; } } else { m_squelchDelayLine.write(0); if (m_squelchCount > 0) { m_squelchCount--; } } } else { if ((Real) m_movingAverage < m_squelchLevel) { m_squelchDelayLine.write(0); if (m_squelchCount > 0) { m_squelchCount--; } } else { m_squelchDelayLine.write(demod * m_discriCompensation); if (m_squelchCount < 2*m_squelchGate) { m_squelchCount++; } } } m_squelchOpen = (m_squelchCount > m_squelchGate); if (m_settings.m_audioMute) { sample = 0; } else { if (m_squelchOpen) { if (m_settings.m_ctcssOn) { Real ctcss_sample = m_lowpass.filter(demod * m_discriCompensation); if ((m_sampleCount & 7) == 7) // decimate 48k -> 6k { if (m_ctcssDetector.analyze(&ctcss_sample)) { int maxToneIndex; if (m_ctcssDetector.getDetectedTone(maxToneIndex)) { if (maxToneIndex+1 != m_ctcssIndex) { if (getMessageQueueToGUI()) { MsgReportCTCSSFreq *msg = MsgReportCTCSSFreq::create(m_ctcssDetector.getToneSet()[maxToneIndex]); getMessageQueueToGUI()->push(msg); } m_ctcssIndex = maxToneIndex+1; } } else { if (m_ctcssIndex != 0) { if (getMessageQueueToGUI()) { MsgReportCTCSSFreq *msg = MsgReportCTCSSFreq::create(0); getMessageQueueToGUI()->push(msg); } m_ctcssIndex = 0; } } } } } if (m_settings.m_ctcssOn && m_ctcssIndexSelected && (m_ctcssIndexSelected != m_ctcssIndex)) { sample = 0; } else { sample = m_bandpass.filter(m_squelchDelayLine.readBack(m_squelchGate)) * m_settings.m_volume; } } else { if (m_ctcssIndex != 0) { if (getMessageQueueToGUI()) { MsgReportCTCSSFreq *msg = MsgReportCTCSSFreq::create(0); getMessageQueueToGUI()->push(msg); } m_ctcssIndex = 0; } sample = 0; } } m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("NFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } if (m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("NFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_settingsMutex.unlock(); } void NFMDemod::start() { qDebug() << "NFMDemod::start"; m_squelchCount = 0; m_audioFifo.clear(); m_phaseDiscri.reset(); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); m_running = true; } void NFMDemod::stop() { qDebug() << "NFMDemod::stop"; m_running = false; } bool NFMDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "NFMDemod::handleMessage: DownChannelizer::MsgChannelizerNotification"; applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "NFMDemod::handleMessage: MsgConfigureChannelizer:" << " sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureNFMDemod::match(cmd)) { MsgConfigureNFMDemod& cfg = (MsgConfigureNFMDemod&) cmd; qDebug() << "NFMDemod::handleMessage: MsgConfigureNFMDemod"; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (BasebandSampleSink::MsgThreadedSink::match(cmd)) { BasebandSampleSink::MsgThreadedSink& cfg = (BasebandSampleSink::MsgThreadedSink&) cmd; const QThread *thread = cfg.getThread(); qDebug("NFMDemod::handleMessage: BasebandSampleSink::MsgThreadedSink: %p", thread); return true; } else if (DSPConfigureAudio::match(cmd)) { DSPConfigureAudio& cfg = (DSPConfigureAudio&) cmd; uint32_t sampleRate = cfg.getSampleRate(); qDebug() << "NFMDemod::handleMessage: DSPConfigureAudio:" << " sampleRate: " << sampleRate; if (sampleRate != m_audioSampleRate) { applyAudioSampleRate(sampleRate); } return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { return false; } } void NFMDemod::applyAudioSampleRate(int sampleRate) { qDebug("NFMDemod::applyAudioSampleRate: %d", sampleRate); MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create( sampleRate, m_settings.m_inputFrequencyOffset); m_inputMessageQueue.push(channelConfigMsg); m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, m_settings.m_rfBandwidth / 2.2f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) sampleRate; m_lowpass.create(301, sampleRate, 250.0); m_bandpass.create(301, sampleRate, 300.0, m_settings.m_afBandwidth); m_squelchGate = (sampleRate / 100) * m_settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter m_ctcssDetector.setCoefficients(sampleRate/16, sampleRate/8.0f); // 0.5s / 2 Hz resolution if (sampleRate < 16000) { m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones_lowrate); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay } else { m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay } m_discriCompensation = (sampleRate/48000.0f); m_discriCompensation *= sqrt(m_discriCompensation); m_phaseDiscri.setFMScaling(sampleRate / static_cast(m_settings.m_fmDeviation)); m_audioFifo.setSize(sampleRate); m_squelchDelayLine.resize(sampleRate/2); m_settingsMutex.unlock(); m_audioSampleRate = sampleRate; } void NFMDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "NFMDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if ((inputFrequencyOffset != m_inputFrequencyOffset) || (inputSampleRate != m_inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((inputSampleRate != m_inputSampleRate) || force) { m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, m_settings.m_rfBandwidth / 2.2f); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_audioSampleRate; m_settingsMutex.unlock(); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void NFMDemod::applySettings(const NFMDemodSettings& settings, bool force) { qDebug() << "NFMDemod::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_afBandwidth: " << settings.m_afBandwidth << " m_fmDeviation: " << settings.m_fmDeviation << " m_volume: " << settings.m_volume << " m_squelchGate: " << settings.m_squelchGate << " m_deltaSquelch: " << settings.m_deltaSquelch << " m_squelch: " << settings.m_squelch << " m_ctcssIndex: " << settings.m_ctcssIndex << " m_ctcssOn: " << settings.m_ctcssOn << " m_audioMute: " << settings.m_audioMute << " m_audioDeviceName: " << settings.m_audioDeviceName << " m_useReverseAPI: " << settings.m_useReverseAPI << " m_reverseAPIAddress: " << settings.m_reverseAPIAddress << " m_reverseAPIPort: " << settings.m_reverseAPIPort << " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex << " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex << " force: " << force; QList reverseAPIKeys; if ((settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || force) { reverseAPIKeys.append("inputFrequencyOffset"); } if ((settings.m_volume != m_settings.m_volume) || force) { reverseAPIKeys.append("volume"); } if ((settings.m_ctcssOn != m_settings.m_ctcssOn) || force) { reverseAPIKeys.append("ctcssOn"); } if ((settings.m_audioMute != m_settings.m_audioMute) || force) { reverseAPIKeys.append("audioMute"); } if ((settings.m_rgbColor != m_settings.m_rgbColor) || force) { reverseAPIKeys.append("rgbColor"); } if ((settings.m_title != m_settings.m_title) || force) { reverseAPIKeys.append("title"); } if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { reverseAPIKeys.append("rfBandwidth"); m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, settings.m_rfBandwidth / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) m_audioSampleRate; m_settingsMutex.unlock(); } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { reverseAPIKeys.append("fmDeviation"); m_phaseDiscri.setFMScaling((8.0f*m_audioSampleRate) / static_cast(settings.m_fmDeviation)); // integrate 4x factor } if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { reverseAPIKeys.append("afBandwidth"); m_settingsMutex.lock(); m_bandpass.create(301, m_audioSampleRate, 300.0, settings.m_afBandwidth); m_settingsMutex.unlock(); } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { reverseAPIKeys.append("squelchGate"); m_squelchGate = (m_audioSampleRate / 100) * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter } if ((settings.m_squelch != m_settings.m_squelch) || force) { reverseAPIKeys.append("squelch"); } if ((settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force) { reverseAPIKeys.append("deltaSquelch"); } if ((settings.m_squelch != m_settings.m_squelch) || (settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force) { if (settings.m_deltaSquelch) { // input is a value in negative centis m_squelchLevel = (- settings.m_squelch) / 100.0; m_afSquelch.setThreshold(m_squelchLevel); m_afSquelch.reset(); } else { // input is a value in deci-Bels m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0); m_movingAverage.reset(); } m_squelchCount = 0; // reset squelch open counter } if ((settings.m_ctcssIndex != m_settings.m_ctcssIndex) || force) { reverseAPIKeys.append("ctcssIndex"); setSelectedCtcssIndex(settings.m_ctcssIndex); } if ((settings.m_audioDeviceName != m_settings.m_audioDeviceName) || force) { reverseAPIKeys.append("audioDeviceName"); AudioDeviceManager *audioDeviceManager = DSPEngine::instance()->getAudioDeviceManager(); int audioDeviceIndex = audioDeviceManager->getOutputDeviceIndex(settings.m_audioDeviceName); //qDebug("AMDemod::applySettings: audioDeviceName: %s audioDeviceIndex: %d", qPrintable(settings.m_audioDeviceName), audioDeviceIndex); audioDeviceManager->addAudioSink(&m_audioFifo, getInputMessageQueue(), audioDeviceIndex); uint32_t audioSampleRate = audioDeviceManager->getOutputSampleRate(audioDeviceIndex); if (m_audioSampleRate != audioSampleRate) { applyAudioSampleRate(audioSampleRate); } } if (settings.m_useReverseAPI) { bool fullUpdate = ((m_settings.m_useReverseAPI != settings.m_useReverseAPI) && settings.m_useReverseAPI) || (m_settings.m_reverseAPIAddress != settings.m_reverseAPIAddress) || (m_settings.m_reverseAPIPort != settings.m_reverseAPIPort) || (m_settings.m_reverseAPIDeviceIndex != settings.m_reverseAPIDeviceIndex) || (m_settings.m_reverseAPIChannelIndex != settings.m_reverseAPIChannelIndex); webapiReverseSendSettings(reverseAPIKeys, settings, fullUpdate || force); } m_settings = settings; } QByteArray NFMDemod::serialize() const { return m_settings.serialize(); } bool NFMDemod::deserialize(const QByteArray& data) { bool success = true; if (!m_settings.deserialize(data)) { m_settings.resetToDefaults(); success = false; } NFMDemod::MsgConfigureChannelizer* channelConfigMsg = NFMDemod::MsgConfigureChannelizer::create( m_audioSampleRate, m_settings.m_inputFrequencyOffset); m_inputMessageQueue.push(channelConfigMsg); MsgConfigureNFMDemod *msg = MsgConfigureNFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return success; } int NFMDemod::webapiSettingsGet( SWGSDRangel::SWGChannelSettings& response, QString& errorMessage) { (void) errorMessage; response.setNfmDemodSettings(new SWGSDRangel::SWGNFMDemodSettings()); response.getNfmDemodSettings()->init(); webapiFormatChannelSettings(response, m_settings); return 200; } int NFMDemod::webapiSettingsPutPatch( bool force, const QStringList& channelSettingsKeys, SWGSDRangel::SWGChannelSettings& response, QString& errorMessage) { (void) errorMessage; NFMDemodSettings settings = m_settings; bool frequencyOffsetChanged = false; if (channelSettingsKeys.contains("afBandwidth")) { settings.m_afBandwidth = response.getNfmDemodSettings()->getAfBandwidth(); } if (channelSettingsKeys.contains("audioMute")) { settings.m_audioMute = response.getNfmDemodSettings()->getAudioMute() != 0; } if (channelSettingsKeys.contains("ctcssIndex")) { settings.m_ctcssIndex = response.getNfmDemodSettings()->getCtcssIndex(); } if (channelSettingsKeys.contains("ctcssOn")) { settings.m_ctcssOn = response.getNfmDemodSettings()->getCtcssOn() != 0; } if (channelSettingsKeys.contains("deltaSquelch")) { settings.m_deltaSquelch = response.getNfmDemodSettings()->getDeltaSquelch() != 0; } if (channelSettingsKeys.contains("fmDeviation")) { settings.m_fmDeviation = response.getNfmDemodSettings()->getFmDeviation(); } if (channelSettingsKeys.contains("inputFrequencyOffset")) { settings.m_inputFrequencyOffset = response.getNfmDemodSettings()->getInputFrequencyOffset(); frequencyOffsetChanged = true; } if (channelSettingsKeys.contains("rfBandwidth")) { settings.m_rfBandwidth = response.getNfmDemodSettings()->getRfBandwidth(); } if (channelSettingsKeys.contains("rgbColor")) { settings.m_rgbColor = response.getNfmDemodSettings()->getRgbColor(); } if (channelSettingsKeys.contains("squelch")) { settings.m_squelch = response.getNfmDemodSettings()->getSquelch(); } if (channelSettingsKeys.contains("squelchGate")) { settings.m_squelchGate = response.getNfmDemodSettings()->getSquelchGate(); } if (channelSettingsKeys.contains("title")) { settings.m_title = *response.getNfmDemodSettings()->getTitle(); } if (channelSettingsKeys.contains("volume")) { settings.m_volume = response.getNfmDemodSettings()->getVolume(); } if (channelSettingsKeys.contains("audioDeviceName")) { settings.m_audioDeviceName = *response.getNfmDemodSettings()->getAudioDeviceName(); } if (channelSettingsKeys.contains("useReverseAPI")) { settings.m_useReverseAPI = response.getNfmDemodSettings()->getUseReverseApi() != 0; } if (channelSettingsKeys.contains("reverseAPIAddress")) { settings.m_reverseAPIAddress = *response.getNfmDemodSettings()->getReverseApiAddress(); } if (channelSettingsKeys.contains("reverseAPIPort")) { settings.m_reverseAPIPort = response.getNfmDemodSettings()->getReverseApiPort(); } if (channelSettingsKeys.contains("reverseAPIDeviceIndex")) { settings.m_reverseAPIDeviceIndex = response.getNfmDemodSettings()->getReverseApiDeviceIndex(); } if (channelSettingsKeys.contains("reverseAPIChannelIndex")) { settings.m_reverseAPIChannelIndex = response.getNfmDemodSettings()->getReverseApiChannelIndex(); } if (frequencyOffsetChanged) { MsgConfigureChannelizer* channelConfigMsg = MsgConfigureChannelizer::create( m_audioSampleRate, settings.m_inputFrequencyOffset); m_inputMessageQueue.push(channelConfigMsg); } MsgConfigureNFMDemod *msg = MsgConfigureNFMDemod::create(settings, force); m_inputMessageQueue.push(msg); if (m_guiMessageQueue) // forward to GUI if any { MsgConfigureNFMDemod *msgToGUI = MsgConfigureNFMDemod::create(settings, force); m_guiMessageQueue->push(msgToGUI); } webapiFormatChannelSettings(response, settings); return 200; } int NFMDemod::webapiReportGet( SWGSDRangel::SWGChannelReport& response, QString& errorMessage) { (void) errorMessage; response.setNfmDemodReport(new SWGSDRangel::SWGNFMDemodReport()); response.getNfmDemodReport()->init(); webapiFormatChannelReport(response); return 200; } void NFMDemod::webapiFormatChannelSettings(SWGSDRangel::SWGChannelSettings& response, const NFMDemodSettings& settings) { response.getNfmDemodSettings()->setAfBandwidth(settings.m_afBandwidth); response.getNfmDemodSettings()->setAudioMute(settings.m_audioMute ? 1 : 0); response.getNfmDemodSettings()->setCtcssIndex(settings.m_ctcssIndex); response.getNfmDemodSettings()->setCtcssOn(settings.m_ctcssOn ? 1 : 0); response.getNfmDemodSettings()->setDeltaSquelch(settings.m_deltaSquelch ? 1 : 0); response.getNfmDemodSettings()->setFmDeviation(settings.m_fmDeviation); response.getNfmDemodSettings()->setInputFrequencyOffset(settings.m_inputFrequencyOffset); response.getNfmDemodSettings()->setRfBandwidth(settings.m_rfBandwidth); response.getNfmDemodSettings()->setRgbColor(settings.m_rgbColor); response.getNfmDemodSettings()->setSquelch(settings.m_squelch); response.getNfmDemodSettings()->setSquelchGate(settings.m_squelchGate); response.getNfmDemodSettings()->setVolume(settings.m_volume); if (response.getNfmDemodSettings()->getTitle()) { *response.getNfmDemodSettings()->getTitle() = settings.m_title; } else { response.getNfmDemodSettings()->setTitle(new QString(settings.m_title)); } if (response.getNfmDemodSettings()->getAudioDeviceName()) { *response.getNfmDemodSettings()->getAudioDeviceName() = settings.m_audioDeviceName; } else { response.getNfmDemodSettings()->setAudioDeviceName(new QString(settings.m_audioDeviceName)); } response.getNfmDemodSettings()->setUseReverseApi(settings.m_useReverseAPI ? 1 : 0); if (response.getNfmDemodSettings()->getReverseApiAddress()) { *response.getNfmDemodSettings()->getReverseApiAddress() = settings.m_reverseAPIAddress; } else { response.getNfmDemodSettings()->setReverseApiAddress(new QString(settings.m_reverseAPIAddress)); } response.getNfmDemodSettings()->setReverseApiPort(settings.m_reverseAPIPort); response.getNfmDemodSettings()->setReverseApiDeviceIndex(settings.m_reverseAPIDeviceIndex); response.getNfmDemodSettings()->setReverseApiChannelIndex(settings.m_reverseAPIChannelIndex); } void NFMDemod::webapiFormatChannelReport(SWGSDRangel::SWGChannelReport& response) { double magsqAvg, magsqPeak; int nbMagsqSamples; getMagSqLevels(magsqAvg, magsqPeak, nbMagsqSamples); response.getNfmDemodReport()->setChannelPowerDb(CalcDb::dbPower(magsqAvg)); response.getNfmDemodReport()->setCtcssTone(m_settings.m_ctcssOn ? (m_ctcssIndex ? 0 : m_ctcssDetector.getToneSet()[m_ctcssIndex-1]) : 0); response.getNfmDemodReport()->setSquelch(m_squelchOpen ? 1 : 0); response.getNfmDemodReport()->setAudioSampleRate(m_audioSampleRate); response.getNfmDemodReport()->setChannelSampleRate(m_inputSampleRate); } void NFMDemod::webapiReverseSendSettings(QList& channelSettingsKeys, const NFMDemodSettings& settings, bool force) { SWGSDRangel::SWGChannelSettings *swgChannelSettings = new SWGSDRangel::SWGChannelSettings(); swgChannelSettings->setDirection(0); // single sink (Rx) swgChannelSettings->setOriginatorChannelIndex(getIndexInDeviceSet()); swgChannelSettings->setOriginatorDeviceSetIndex(getDeviceSetIndex()); swgChannelSettings->setChannelType(new QString("NFMDemod")); swgChannelSettings->setNfmDemodSettings(new SWGSDRangel::SWGNFMDemodSettings()); SWGSDRangel::SWGNFMDemodSettings *swgNFMDemodSettings = swgChannelSettings->getNfmDemodSettings(); // transfer data that has been modified. When force is on transfer all data except reverse API data if (channelSettingsKeys.contains("afBandwidth") || force) { swgNFMDemodSettings->setAfBandwidth(settings.m_afBandwidth); } if (channelSettingsKeys.contains("audioMute") || force) { swgNFMDemodSettings->setAudioMute(settings.m_audioMute ? 1 : 0); } if (channelSettingsKeys.contains("ctcssIndex") || force) { swgNFMDemodSettings->setCtcssIndex(settings.m_ctcssIndex); } if (channelSettingsKeys.contains("ctcssOn") || force) { swgNFMDemodSettings->setCtcssOn(settings.m_ctcssOn ? 1 : 0); } if (channelSettingsKeys.contains("deltaSquelch") || force) { swgNFMDemodSettings->setDeltaSquelch(settings.m_deltaSquelch ? 1 : 0); } if (channelSettingsKeys.contains("fmDeviation") || force) { swgNFMDemodSettings->setFmDeviation(settings.m_fmDeviation); } if (channelSettingsKeys.contains("inputFrequencyOffset") || force) { swgNFMDemodSettings->setInputFrequencyOffset(settings.m_inputFrequencyOffset); } if (channelSettingsKeys.contains("rfBandwidth") || force) { swgNFMDemodSettings->setRfBandwidth(settings.m_rfBandwidth); } if (channelSettingsKeys.contains("rgbColor") || force) { swgNFMDemodSettings->setRgbColor(settings.m_rgbColor); } if (channelSettingsKeys.contains("squelch") || force) { swgNFMDemodSettings->setSquelch(settings.m_squelch); } if (channelSettingsKeys.contains("squelchGate") || force) { swgNFMDemodSettings->setSquelchGate(settings.m_squelchGate); } if (channelSettingsKeys.contains("title") || force) { swgNFMDemodSettings->setTitle(new QString(settings.m_title)); } if (channelSettingsKeys.contains("volume") || force) { swgNFMDemodSettings->setVolume(settings.m_volume); } if (channelSettingsKeys.contains("audioDeviceName") || force) { swgNFMDemodSettings->setAudioDeviceName(new QString(settings.m_audioDeviceName)); } QString channelSettingsURL = QString("http://%1:%2/sdrangel/deviceset/%3/channel/%4/settings") .arg(settings.m_reverseAPIAddress) .arg(settings.m_reverseAPIPort) .arg(settings.m_reverseAPIDeviceIndex) .arg(settings.m_reverseAPIChannelIndex); m_networkRequest.setUrl(QUrl(channelSettingsURL)); m_networkRequest.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); QBuffer *buffer=new QBuffer(); buffer->open((QBuffer::ReadWrite)); buffer->write(swgChannelSettings->asJson().toUtf8()); buffer->seek(0); // Always use PATCH to avoid passing reverse API settings m_networkManager->sendCustomRequest(m_networkRequest, "PATCH", buffer); delete swgChannelSettings; } void NFMDemod::networkManagerFinished(QNetworkReply *reply) { QNetworkReply::NetworkError replyError = reply->error(); if (replyError) { qWarning() << "NFMDemod::networkManagerFinished:" << " error(" << (int) replyError << "): " << replyError << ": " << reply->errorString(); return; } QString answer = reply->readAll(); answer.chop(1); // remove last \n qDebug("NFMDemod::networkManagerFinished: reply:\n%s", answer.toStdString().c_str()); }