/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "util/simpleserializer.h" #include "dsp/dspcommands.h" #include "bladerfgui.h" #include "bladerfinput.h" #include "bladerfthread.h" MESSAGE_CLASS_DEFINITION(BladerfInput::MsgConfigureBladerf, Message) MESSAGE_CLASS_DEFINITION(BladerfInput::MsgReportBladerf, Message) BladerfInput::Settings::Settings() : m_centerFrequency(435000*1000), m_devSampleRate(3072000), m_lnaGain(0), m_vga1(20), m_vga2(9), m_bandwidth(1500000), m_log2Decim(0), m_fcPos(FC_POS_INFRA), m_xb200(false), m_xb200Path(BLADERF_XB200_MIX), m_xb200Filter(BLADERF_XB200_AUTO_1DB) { } void BladerfInput::Settings::resetToDefaults() { m_centerFrequency = 435000*1000; m_devSampleRate = 3072000; m_lnaGain = 0; m_vga1 = 20; m_vga2 = 9; m_bandwidth = 1500000; m_log2Decim = 0; m_fcPos = FC_POS_INFRA; m_xb200 = false; m_xb200Path = BLADERF_XB200_MIX; m_xb200Filter = BLADERF_XB200_AUTO_1DB; } QByteArray BladerfInput::Settings::serialize() const { SimpleSerializer s(1); s.writeS32(1, m_lnaGain); s.writeS32(2, m_vga1); s.writeS32(3, m_vga2); s.writeU32(4, m_log2Decim); s.writeBool(5, m_xb200); s.writeS32(6, (int) m_xb200Path); s.writeS32(7, (int) m_xb200Filter); s.writeS32(8, m_bandwidth); s.writeS32(9, (int) m_fcPos); s.writeU64(10, m_centerFrequency); s.writeS32(11, m_devSampleRate); return s.final(); } bool BladerfInput::Settings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if (!d.isValid()) { resetToDefaults(); return false; } if (d.getVersion() == 1) { int intval; d.readS32(1, &m_lnaGain, 0); d.readS32(2, &m_vga1, 20); d.readS32(3, &m_vga2, 9); d.readU32(4, &m_log2Decim, 0); d.readBool(5, &m_xb200); d.readS32(6, &intval); m_xb200Path = (bladerf_xb200_path) intval; d.readS32(7, &intval); m_xb200Filter = (bladerf_xb200_filter) intval; d.readS32(8, &m_bandwidth, 0); d.readS32(9, &intval, 0); m_fcPos = (fcPos_t) intval; d.readU64(10, &m_centerFrequency, 435000*1000); d.readS32(11, &m_devSampleRate, 3072000); return true; } else { resetToDefaults(); return false; } } BladerfInput::BladerfInput() : m_settings(), m_dev(0), m_bladerfThread(0), m_deviceDescription("BladeRF") { } BladerfInput::~BladerfInput() { stop(); } bool BladerfInput::init(const Message& cmd) { return false; } bool BladerfInput::start(int device) { QMutexLocker mutexLocker(&m_mutex); if (m_dev != 0) { stop(); } int res; int fpga_loaded; if (!m_sampleFifo.setSize(96000 * 4)) { qCritical("Could not allocate SampleFifo"); return false; } if ((m_dev = open_bladerf_from_serial(0)) == 0) // TODO: fix; Open first available device as there is no proper handling for multiple devices { qCritical("could not open BladeRF"); return false; } fpga_loaded = bladerf_is_fpga_configured(m_dev); if (fpga_loaded < 0) { qCritical("Failed to check FPGA state: %s", bladerf_strerror(fpga_loaded)); return false; } else if (fpga_loaded == 0) { qCritical("The device's FPGA is not loaded."); return false; } // TODO: adjust USB transfer data according to sample rate if ((res = bladerf_sync_config(m_dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000)) < 0) { qCritical("bladerf_sync_config with return code %d", res); goto failed; } if ((res = bladerf_enable_module(m_dev, BLADERF_MODULE_RX, true)) < 0) { qCritical("bladerf_enable_module with return code %d", res); goto failed; } if((m_bladerfThread = new BladerfThread(m_dev, &m_sampleFifo)) == NULL) { qFatal("out of memory"); goto failed; } m_bladerfThread->startWork(); mutexLocker.unlock(); applySettings(m_settings, true); qDebug("BladerfInput::startInput: started"); return true; failed: stop(); return false; } void BladerfInput::stop() { QMutexLocker mutexLocker(&m_mutex); if(m_bladerfThread != 0) { m_bladerfThread->stopWork(); delete m_bladerfThread; m_bladerfThread = 0; } if(m_dev != 0) { bladerf_close(m_dev); m_dev = 0; } m_deviceDescription.clear(); } const QString& BladerfInput::getDeviceDescription() const { return m_deviceDescription; } int BladerfInput::getSampleRate() const { int rate = m_settings.m_devSampleRate; return (rate / (1<setSamplerate(m_settings.m_devSampleRate); } } } if ((m_settings.m_bandwidth != settings.m_bandwidth) || force) { m_settings.m_bandwidth = settings.m_bandwidth; if(m_dev != 0) { unsigned int actualBandwidth; if( bladerf_set_bandwidth(m_dev, BLADERF_MODULE_RX, m_settings.m_bandwidth, &actualBandwidth) < 0) { qCritical("could not set bandwidth: %d", m_settings.m_bandwidth); } else { qDebug() << "bladerf_set_bandwidth(BLADERF_MODULE_RX) actual bandwidth is " << actualBandwidth; } } } if ((m_settings.m_log2Decim != settings.m_log2Decim) || force) { m_settings.m_log2Decim = settings.m_log2Decim; forwardChange = true; if(m_dev != 0) { m_bladerfThread->setLog2Decimation(m_settings.m_log2Decim); qDebug() << "BladerfInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos); qDebug() << "BladerfInput: set fc pos (enum) to " << (int) m_settings.m_fcPos; } } if (m_settings.m_centerFrequency != settings.m_centerFrequency) { forwardChange = true; } m_settings.m_centerFrequency = settings.m_centerFrequency; qint64 deviceCenterFrequency = m_settings.m_centerFrequency; qint64 f_img = deviceCenterFrequency; qint64 f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2; if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == FC_POS_CENTER)) { deviceCenterFrequency = m_settings.m_centerFrequency; f_img = deviceCenterFrequency; f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2; } else { if (m_settings.m_fcPos == FC_POS_INFRA) { deviceCenterFrequency = m_settings.m_centerFrequency + (m_settings.m_devSampleRate / 4); f_img = deviceCenterFrequency + m_settings.m_devSampleRate/2; f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2; } else if (m_settings.m_fcPos == FC_POS_SUPRA) { deviceCenterFrequency = m_settings.m_centerFrequency - (m_settings.m_devSampleRate / 4); f_img = deviceCenterFrequency - m_settings.m_devSampleRate/2; f_cut = deviceCenterFrequency - m_settings.m_bandwidth/2; } } if (m_dev != NULL) { if (bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, deviceCenterFrequency ) != 0) { qDebug("bladerf_set_frequency(%lld) failed", m_settings.m_centerFrequency); } } if (forwardChange) { int sampleRate = m_settings.m_devSampleRate/(1<push(notif); } qDebug() << "BladerfInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz" << " device center freq: " << deviceCenterFrequency << " Hz" << " device sample rate: " << m_settings.m_devSampleRate << "Hz" << " Actual sample rate: " << m_settings.m_devSampleRate/(1<