/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // Copyright (C) 2020 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/dspengine.h" #include "util/simpleserializer.h" #include "settings/serializable.h" #include "ieee_802_15_4_modsettings.h" #include "ieee_802_15_4_macframe.h" IEEE_802_15_4_ModSettings::IEEE_802_15_4_ModSettings() : m_channelMarker(nullptr), m_rollupState(nullptr) { resetToDefaults(); } void IEEE_802_15_4_ModSettings::resetToDefaults() { IEEE_802_15_4_MacFrame macFrame; char frame[1024]; macFrame.toHexCharArray(frame); m_inputFrequencyOffset = 0; m_modulation = BPSK; m_bitRate = 20000; m_subGHzBand = true; m_rfBandwidth = 2.0f * 300000.0f; m_gain = -1.0f; // To avoid overflow, which results in out-of-band RF m_channelMute = false; m_repeat = false; m_repeatDelay = 1.0f; m_repeatCount = infinitePackets; m_rampUpBits = 0; m_rampDownBits = 0; m_rampRange = 0; m_modulateWhileRamping = true; m_lpfTaps = 301; m_bbNoise = false; m_writeToFile = false; m_spectrumRate = m_rfBandwidth; m_data = QString(frame); m_rgbColor = QColor(255, 0, 0).rgb(); m_title = "802.15.4 Modulator"; m_streamIndex = 0; m_useReverseAPI = false; m_reverseAPIAddress = "127.0.0.1"; m_reverseAPIPort = 8888; m_reverseAPIDeviceIndex = 0; m_reverseAPIChannelIndex = 0; m_scramble = false; m_polynomial = 0x108; m_pulseShaping = RC; m_beta = 1.0f; m_symbolSpan = 6; m_udpEnabled = false; m_udpBytesFormat = false; m_udpAddress = "127.0.0.1"; m_udpPort = 9998; } bool IEEE_802_15_4_ModSettings::setPHY(QString phy) { float bitRate; bool valid; // First part of phy string should give bitrate in kbps bitRate = phy.split("k")[0].toFloat(&valid) * 1000.0f; if (!valid) { return false; } if (phy.contains("BPSK")) { m_bitRate = bitRate; m_subGHzBand = true; m_rfBandwidth = 2.0 * bitRate * 15.0; m_spectrumRate = m_rfBandwidth; m_modulation = IEEE_802_15_4_ModSettings::BPSK; m_pulseShaping = RC; m_beta = 1.0f; m_symbolSpan = 6; } else if (phy.contains("O-QPSK")) { m_bitRate = bitRate; m_subGHzBand = phy.contains("<1"); m_rfBandwidth = 2.0 * (bitRate / 4.0) * (m_subGHzBand ? 16.0 : 32.0); m_spectrumRate = m_rfBandwidth; m_modulation = IEEE_802_15_4_ModSettings::OQPSK; if (phy.contains("RC")) { m_pulseShaping = RC; m_beta = 0.8f; m_symbolSpan = 6; } else m_pulseShaping = SINE; } else return false; return true; } QString IEEE_802_15_4_ModSettings::getPHY() const { int decPos = 0; if (m_bitRate < 10000) { decPos = 1; } return QString("%1kbps %2").arg(m_bitRate / 1000.0, 0, 'f', decPos).arg(m_modulation == IEEE_802_15_4_ModSettings::BPSK ? "BPSK" : "O-QPSK"); } int IEEE_802_15_4_ModSettings::getChipRate() const { int chipsPerSymbol, bitsPerSymbol; if (m_modulation == BPSK) { chipsPerSymbol = 15; bitsPerSymbol = 1; } else { bitsPerSymbol = 4; chipsPerSymbol = m_subGHzBand ? 16 : 32; } return m_bitRate * chipsPerSymbol / bitsPerSymbol; } QByteArray IEEE_802_15_4_ModSettings::serialize() const { SimpleSerializer s(1); s.writeS32(1, m_inputFrequencyOffset); s.writeS32(2, m_bitRate); s.writeReal(3, m_rfBandwidth); s.writeBool(4, m_subGHzBand); s.writeReal(5, m_gain); s.writeBool(6, m_channelMute); s.writeBool(7, m_repeat); s.writeReal(8, m_repeatDelay); s.writeS32(9, m_repeatCount); s.writeS32(10, m_rampUpBits); s.writeS32(11, m_rampDownBits); s.writeS32(12, m_rampRange); s.writeBool(13, m_modulateWhileRamping); s.writeS32(14, m_lpfTaps); s.writeBool(15, m_bbNoise); s.writeBool(16, m_writeToFile); s.writeString(17, m_data); s.writeU32(18, m_rgbColor); s.writeString(19, m_title); if (m_channelMarker) { s.writeBlob(20, m_channelMarker->serialize()); } s.writeS32(21, m_streamIndex); s.writeBool(22, m_useReverseAPI); s.writeString(23, m_reverseAPIAddress); s.writeU32(24, m_reverseAPIPort); s.writeU32(25, m_reverseAPIDeviceIndex); s.writeU32(26, m_reverseAPIChannelIndex); s.writeBool(27, m_scramble); s.writeS32(28, m_polynomial); s.writeS32(29, m_pulseShaping); s.writeReal(30, m_beta); s.writeS32(31, m_symbolSpan); s.writeS32(32, m_spectrumRate); s.writeS32(33, m_modulation); s.writeBool(34, m_udpEnabled); s.writeString(35, m_udpAddress); s.writeU32(36, m_udpPort); s.writeBool(37, m_udpBytesFormat); if (m_rollupState) { s.writeBlob(38, m_rollupState->serialize()); } return s.final(); } bool IEEE_802_15_4_ModSettings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if(!d.isValid()) { resetToDefaults(); return false; } if(d.getVersion() == 1) { QByteArray bytetmp; qint32 tmp; uint32_t utmp; d.readS32(1, &tmp, 0); m_inputFrequencyOffset = tmp; d.readS32(2, &m_bitRate, 20000); d.readReal(3, &m_rfBandwidth, 2.0f * 300000.0f); d.readBool(4, &m_subGHzBand, m_bitRate <= 40000); d.readReal(5, &m_gain, 0.0f); d.readBool(6, &m_channelMute, false); d.readBool(7, &m_repeat, false); d.readReal(8, &m_repeatDelay, 1.0f); d.readS32(9, &m_repeatCount, -1); d.readS32(10, &m_rampUpBits, 8); d.readS32(11, &m_rampDownBits, 8); d.readS32(12, &m_rampRange, 8); d.readBool(13, &m_modulateWhileRamping, true); d.readS32(14, &m_lpfTaps, 301); d.readBool(15, &m_bbNoise, false); d.readBool(16, &m_writeToFile, false); d.readString(17, &m_data, ""); d.readU32(18, &m_rgbColor); d.readString(19, &m_title, "802.15.4 Modulator"); if (m_channelMarker) { d.readBlob(20, &bytetmp); m_channelMarker->deserialize(bytetmp); } d.readS32(21, &m_streamIndex, 0); d.readBool(22, &m_useReverseAPI, false); d.readString(23, &m_reverseAPIAddress, "127.0.0.1"); d.readU32(24, &utmp, 0); if ((utmp > 1023) && (utmp < 65535)) { m_reverseAPIPort = utmp; } else { m_reverseAPIPort = 8888; } d.readU32(25, &utmp, 0); m_reverseAPIDeviceIndex = utmp > 99 ? 99 : utmp; d.readU32(26, &utmp, 0); m_reverseAPIChannelIndex = utmp > 99 ? 99 : utmp; d.readBool(27, &m_scramble, false); d.readS32(28, &m_polynomial, 0x108); d.readS32(29, (qint32 *)&m_pulseShaping, RC); d.readReal(30, &m_beta, 1.0f); d.readS32(31, &m_symbolSpan, 6); d.readS32(32, &m_spectrumRate, m_rfBandwidth); d.readS32(33, (qint32 *)&m_modulation, m_bitRate < 100000 ? IEEE_802_15_4_ModSettings::BPSK : IEEE_802_15_4_ModSettings::OQPSK); d.readBool(34, &m_udpEnabled); d.readString(35, &m_udpAddress, "127.0.0.1"); d.readU32(36, &utmp); if ((utmp > 1023) && (utmp < 65535)) { m_udpPort = utmp; } else { m_udpPort = 9998; } d.readBool(37, &m_udpBytesFormat); if (m_rollupState) { d.readBlob(38, &bytetmp); m_rollupState->deserialize(bytetmp); } return true; } else { qDebug() << "IEEE_802_15_4_ModSettings::deserialize: ERROR"; resetToDefaults(); return false; } }