/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "util/simpleserializer.h" #include "bladerfgui.h" #include "bladerfinput.h" #include "bladerfthread.h" MESSAGE_CLASS_DEFINITION(BladerfInput::MsgConfigureBladerf, Message) MESSAGE_CLASS_DEFINITION(BladerfInput::MsgReportBladerf, Message) BladerfInput::Settings::Settings() : m_lnaGain(0), m_vga1(20), m_vga2(9), m_samplerate(3072000), m_bandwidth(1500000), m_log2Decim(0), m_fcPos(FC_POS_INFRA), m_xb200(false), m_xb200Path(BLADERF_XB200_MIX), m_xb200Filter(BLADERF_XB200_AUTO_1DB) { } void BladerfInput::Settings::resetToDefaults() { m_lnaGain = 0; m_vga1 = 20; m_vga2 = 9; m_samplerate = 3072000; m_bandwidth = 1500000; m_log2Decim = 0; m_fcPos = FC_POS_INFRA; m_xb200 = false; m_xb200Path = BLADERF_XB200_MIX; m_xb200Filter = BLADERF_XB200_AUTO_1DB; } QByteArray BladerfInput::Settings::serialize() const { SimpleSerializer s(1); s.writeS32(1, m_lnaGain); s.writeS32(2, m_vga1); s.writeS32(3, m_vga2); s.writeS32(4, m_samplerate); s.writeU32(5, m_log2Decim); s.writeBool(6, m_xb200); s.writeS32(7, (int) m_xb200Path); s.writeS32(8, (int) m_xb200Filter); s.writeS32(9, m_bandwidth); s.writeS32(10, (int) m_fcPos); return s.final(); } bool BladerfInput::Settings::deserialize(const QByteArray& data) { SimpleDeserializer d(data); if(!d.isValid()) { resetToDefaults(); return false; } if(d.getVersion() == 1) { int intval; d.readS32(1, &m_lnaGain, 0); d.readS32(2, &m_vga1, 20); d.readS32(3, &m_vga2, 9); d.readS32(4, &m_samplerate, 0); d.readU32(5, &m_log2Decim, 0); d.readBool(6, &m_xb200); d.readS32(7, &intval); m_xb200Path = (bladerf_xb200_path) intval; d.readS32(8, &intval); m_xb200Filter = (bladerf_xb200_filter) intval; d.readS32(9, &m_bandwidth, 0); d.readS32(10, &intval, 0); m_fcPos = (fcPos_t) intval; return true; } else { resetToDefaults(); return false; } } BladerfInput::BladerfInput(MessageQueue* msgQueueToGUI) : SampleSource(msgQueueToGUI), m_settings(), m_dev(NULL), m_bladerfThread(NULL), m_deviceDescription() { } BladerfInput::~BladerfInput() { stopInput(); } bool BladerfInput::startInput(int device) { QMutexLocker mutexLocker(&m_mutex); if(m_dev != NULL) stopInput(); int res; int fpga_loaded; if(!m_sampleFifo.setSize(96000 * 4)) { qCritical("Could not allocate SampleFifo"); return false; } if ((m_dev = open_bladerf_from_serial(0)) == NULL) // TODO: fix; Open first available device as there is no proper handling for multiple devices { qCritical("could not open BladeRF"); return false; } fpga_loaded = bladerf_is_fpga_configured(m_dev); if (fpga_loaded < 0) { qCritical("Failed to check FPGA state: %s", bladerf_strerror(fpga_loaded)); return false; } else if (fpga_loaded == 0) { qCritical("The device's FPGA is not loaded."); return false; } // TODO: adjust USB transfer data according to sample rate if ((res = bladerf_sync_config(m_dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000)) < 0) { qCritical("bladerf_sync_config with return code %d", res); goto failed; } if ((res = bladerf_enable_module(m_dev, BLADERF_MODULE_RX, true)) < 0) { qCritical("bladerf_enable_module with return code %d", res); goto failed; } if((m_bladerfThread = new BladerfThread(m_dev, &m_sampleFifo)) == NULL) { qFatal("out of memory"); goto failed; } m_bladerfThread->startWork(); mutexLocker.unlock(); applySettings(m_generalSettings, m_settings, true); qDebug("bladerfInput: start"); //MsgReportBladerf::create(m_gains)->submit(m_guiMessageQueue); Pass anything here return true; failed: stopInput(); return false; } void BladerfInput::stopInput() { QMutexLocker mutexLocker(&m_mutex); if(m_bladerfThread != NULL) { m_bladerfThread->stopWork(); delete m_bladerfThread; m_bladerfThread = NULL; } if(m_dev != NULL) { bladerf_close(m_dev); m_dev = NULL; } m_deviceDescription.clear(); } const QString& BladerfInput::getDeviceDescription() const { return m_deviceDescription; } int BladerfInput::getSampleRate() const { int rate = m_settings.m_samplerate; return (rate / (1<getGeneralSettings(), conf->getSettings(), false)) qDebug("BladeRF config error"); message->completed(); return true; } else { return false; } } bool BladerfInput::applySettings(const GeneralSettings& generalSettings, const Settings& settings, bool force) { QMutexLocker mutexLocker(&m_mutex); if((m_settings.m_lnaGain != settings.m_lnaGain) || force) { m_settings.m_lnaGain = settings.m_lnaGain; if(m_dev != NULL) { if(bladerf_set_lna_gain(m_dev, getLnaGain(m_settings.m_lnaGain)) != 0) { qDebug("bladerf_set_lna_gain() failed"); } else { std::cerr << "BladerfInput: LNA gain set to " << getLnaGain(m_settings.m_lnaGain) << std::endl; } } } if((m_settings.m_vga1 != settings.m_vga1) || force) { m_settings.m_vga1 = settings.m_vga1; if(m_dev != NULL) { if(bladerf_set_rxvga1(m_dev, m_settings.m_vga1) != 0) { qDebug("bladerf_set_rxvga1() failed"); } else { std::cerr << "BladerfInput: VGA1 gain set to " << m_settings.m_vga1 << std::endl; } } } if((m_settings.m_vga2 != settings.m_vga2) || force) { m_settings.m_vga2 = settings.m_vga2; if(m_dev != NULL) { if(bladerf_set_rxvga2(m_dev, m_settings.m_vga2) != 0) { qDebug("bladerf_set_rxvga2() failed"); } else { std::cerr << "BladerfInput: VGA2 gain set to " << m_settings.m_vga2 << std::endl; } } } if((m_settings.m_xb200 != settings.m_xb200) || force) { m_settings.m_xb200 = settings.m_xb200; if(m_dev != NULL) { if (m_settings.m_xb200) { if (bladerf_expansion_attach(m_dev, BLADERF_XB_200) != 0) { qDebug("bladerf_expansion_attach(xb200) failed"); } else { std::cerr << "BladerfInput: Attach XB200" << std::endl; } } else { if (bladerf_expansion_attach(m_dev, BLADERF_XB_NONE) != 0) { qDebug("bladerf_expansion_attach(none) failed"); } else { std::cerr << "BladerfInput: Detach XB200" << std::endl; } } } } if((m_settings.m_xb200Path != settings.m_xb200Path) || force) { m_settings.m_xb200Path = settings.m_xb200Path; if(m_dev != NULL) { if(bladerf_xb200_set_path(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Path) != 0) { qDebug("bladerf_xb200_set_path(BLADERF_MODULE_RX) failed"); } else { std::cerr << "BladerfInput: set xb200 path to " << m_settings.m_xb200Path << std::endl; } } } if((m_settings.m_xb200Filter != settings.m_xb200Filter) || force) { m_settings.m_xb200Filter = settings.m_xb200Filter; if(m_dev != NULL) { if(bladerf_xb200_set_filterbank(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Filter) != 0) { qDebug("bladerf_xb200_set_filterbank(BLADERF_MODULE_RX) failed"); } else { std::cerr << "BladerfInput: set xb200 filter to " << m_settings.m_xb200Filter << std::endl; } } } if((m_settings.m_samplerate != settings.m_samplerate) || force) { if(m_dev != NULL) { unsigned int actualSamplerate; if( bladerf_set_sample_rate(m_dev, BLADERF_MODULE_RX, settings.m_samplerate, &actualSamplerate) < 0) qCritical("could not set sample rate: %d", settings.m_samplerate); else { std::cerr << "bladerf_set_sample_rate(BLADERF_MODULE_RX) actual sample rate is " << actualSamplerate << std::endl; m_settings.m_samplerate = settings.m_samplerate; m_bladerfThread->setSamplerate(settings.m_samplerate); } } } if((m_settings.m_bandwidth != settings.m_bandwidth) || force) { if(m_dev != NULL) { unsigned int actualBandwidth; if( bladerf_set_bandwidth(m_dev, BLADERF_MODULE_RX, settings.m_bandwidth, &actualBandwidth) < 0) qCritical("could not set sample rate: %d", settings.m_samplerate); else { std::cerr << "bladerf_set_bandwidth(BLADERF_MODULE_RX) actual bandwidth is " << actualBandwidth << std::endl; m_settings.m_bandwidth = settings.m_bandwidth; } } } if((m_settings.m_log2Decim != settings.m_log2Decim) || force) { if(m_dev != NULL) { m_settings.m_log2Decim = settings.m_log2Decim; m_bladerfThread->setLog2Decimation(settings.m_log2Decim); std::cerr << "BladerfInput: set decimation to " << (1<setFcPos((int) settings.m_fcPos); std::cerr << "BladerfInput: set fc pos (enum) to " << (int) m_settings.m_fcPos << std::endl; } } m_generalSettings.m_centerFrequency = generalSettings.m_centerFrequency; if(m_dev != NULL) { qint64 centerFrequency = m_generalSettings.m_centerFrequency; qint64 f_img = centerFrequency; qint64 f_cut = centerFrequency + m_settings.m_bandwidth/2; if (m_settings.m_log2Decim == 0) { // Little wooby-doop if no decimation centerFrequency = m_generalSettings.m_centerFrequency; f_img = centerFrequency; f_cut = centerFrequency + m_settings.m_bandwidth/2; } else { if (m_settings.m_fcPos == FC_POS_INFRA) { centerFrequency = m_generalSettings.m_centerFrequency + (m_settings.m_samplerate / 4); f_img = centerFrequency + m_settings.m_samplerate/2; f_cut = centerFrequency + m_settings.m_bandwidth/2; } else if (m_settings.m_fcPos == FC_POS_SUPRA) { centerFrequency = m_generalSettings.m_centerFrequency - (m_settings.m_samplerate / 4); f_img = centerFrequency - m_settings.m_samplerate/2; f_cut = centerFrequency - m_settings.m_bandwidth/2; } } if(bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, centerFrequency ) != 0) { qDebug("bladerf_set_frequency(%lld) failed", m_generalSettings.m_centerFrequency); } std::cerr << "BladerfInput: center freq: " << m_generalSettings.m_centerFrequency << " Hz" << " RF center freq: " << centerFrequency << " Hz" << " sample rate / 2 : " << m_settings.m_samplerate/2 << "Hz" << " BW: " << m_settings.m_bandwidth << "Hz" << " img: " << f_img << "Hz" << " cut: " << f_cut << "Hz" << " img - cut: " << f_img - f_cut << std::endl; } return true; } bladerf_lna_gain BladerfInput::getLnaGain(int lnaGain) { if (lnaGain == 2) { return BLADERF_LNA_GAIN_MAX; } else if (lnaGain == 1) { return BLADERF_LNA_GAIN_MID; } else { return BLADERF_LNA_GAIN_BYPASS; } } struct bladerf *BladerfInput::open_bladerf_from_serial(const char *serial) { int status; struct bladerf *dev; struct bladerf_devinfo info; /* Initialize all fields to "don't care" wildcard values. * * Immediately passing this to bladerf_open_with_devinfo() would cause * libbladeRF to open any device on any available backend. */ bladerf_init_devinfo(&info); /* Specify the desired device's serial number, while leaving all other * fields in the info structure wildcard values */ if (serial != NULL) { strncpy(info.serial, serial, BLADERF_SERIAL_LENGTH - 1); info.serial[BLADERF_SERIAL_LENGTH - 1] = '\0'; } status = bladerf_open_with_devinfo(&dev, &info); if (status == BLADERF_ERR_NODEV) { fprintf(stderr, "No devices available with serial=%s\n", serial); return NULL; } else if (status != 0) { fprintf(stderr, "Failed to open device with serial=%s (%s)\n", serial, bladerf_strerror(status)); return NULL; } else { return dev; } }