/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2023 Edouard Griffiths, F4EXB. // // // // This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon // // written by Robert Morris, AB1HL // // reformatted and adapted to Qt and SDRangel context // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// // // An FT8 receiver in C++. // // Many ideas and protocol details borrowed from Franke // and Taylor's WSJT-X code. // // Robert Morris, AB1HL // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "util.h" #include "fft.h" #include "ft8.h" #include "libldpc.h" #include "osd.h" namespace FT8 { // 1920-point FFT at 12000 samples/second // 6.25 Hz spacing, 0.16 seconds/symbol // encode chain: // 77 bits // append 14 bits CRC (for 91 bits) // LDPC(174,91) yields 174 bits // that's 58 3-bit FSK-8 symbols // gray code each 3 bits // insert three 7-symbol Costas sync arrays // at symbol #s 0, 36, 72 of final signal // thus: 79 FSK-8 symbols // total transmission time is 12.64 seconds // tunable parameters int nthreads = 8; // number of parallel threads, for multi-core int npasses_one = 3; // number of spectral subtraction passes int npasses_two = 3; // number of spectral subtraction passes int ldpc_iters = 25; // how hard LDPC decoding should work int snr_win = 7; // averaging window, in symbols, for SNR conversion int snr_how = 3; // technique to measure "N" for SNR. 0 means median of the 8 tones. float shoulder200 = 10; // for 200 sps bandpass filter float shoulder200_extra = 0.0; // for bandpass filter float second_hz_win = 3.5; // +/- hz int second_hz_n = 8; // divide total window into this many pieces float second_off_win = 0.5; // +/- search window in symbol-times int second_off_n = 10; int third_hz_n = 3; float third_hz_win = 0.25; int third_off_n = 4; float third_off_win = 0.075; float log_tail = 0.1; float log_rate = 8.0; int problt_how_noise = 0; int problt_how_sig = 0; int use_apriori = 1; int use_hints = 2; // 1 means use all hints, 2 means just CQ hints int win_type = 1; int osd_depth = 0; // 6; // don't increase beyond 6, produces too much garbage int osd_ldpc_thresh = 70; // demand this many correct LDPC parity bits before OSD int ncoarse = 1; // number of offsets per hz produced by coarse() int ncoarse_blocks = 1; float tminus = 2.2; // start looking at 0.5 - tminus seconds float tplus = 2.4; int coarse_off_n = 4; int coarse_hz_n = 4; float already_hz = 27; float overlap = 20; int overlap_edges = 0; float nyquist = 0.925; int oddrate = 1; float pass0_frac = 1.0; int reduce_how = 2; float go_extra = 3.5; int do_reduce = 1; int pass_threshold = 1; int strength_how = 4; int known_strength_how = 7; int coarse_strength_how = 6; float reduce_shoulder = -1; float reduce_factor = 0.25; float reduce_extra = 0; float coarse_all = -1; int second_count = 3; int soft_phase_win = 2; float subtract_ramp = 0.11; extern int fftw_type; // fft.cc. MEASURE=0, ESTIMATE=64, PATIENT=32 int soft_ones = 2; int soft_pairs = 1; int soft_triples = 1; int do_second = 1; int do_fine_hz = 1; int do_fine_off = 1; int do_third = 2; float fine_thresh = 0.19; int fine_max_off = 2; int fine_max_tone = 4; int known_sparse = 1; float c_soft_weight = 7; int c_soft_win = 2; int bayes_how = 1; // // return a Hamming window of length n. // std::vector hamming(int n) { std::vector h(n); for (int k = 0; k < n; k++) { h[k] = 0.54 - 0.46 * cos(2 * M_PI * k / (n - 1.0)); } return h; } // // blackman window // std::vector blackman(int n) { std::vector h(n); for (int k = 0; k < n; k++) { h[k] = 0.42 - 0.5 * cos(2 * M_PI * k / n) + 0.08 * cos(4 * M_PI * k / n); } return h; } // // symmetric blackman window // std::vector sym_blackman(int n) { std::vector h(n); for (int k = 0; k < (n / 2) + 1; k++) { h[k] = 0.42 - 0.5 * cos(2 * M_PI * k / n) + 0.08 * cos(4 * M_PI * k / n); } for (int k = n - 1; k >= (n / 2) + 1; --k) { h[k] = h[(n - 1) - k]; } return h; } // // blackman-harris window // std::vector blackmanharris(int n) { float a0 = 0.35875; float a1 = 0.48829; float a2 = 0.14128; float a3 = 0.01168; std::vector h(n); for (int k = 0; k < n; k++) { // symmetric h[k] = a0 - a1 * cos(2 * M_PI * k / (n - 1)) + a2 * cos(4 * M_PI * k / (n - 1)) - a3 * cos(6 * M_PI * k / (n - 1)); // periodic // h[k] = // a0 // - a1 * cos(2 * M_PI * k / n) // + a2 * cos(4 * M_PI * k / n) // - a3 * cos(6 * M_PI * k / n); } return h; } // // manage statistics for soft decoding, to help // decide how likely each symbol is to be correct, // to drive LDPC decoding. // // meaning of the how (problt_how) parameter: // 0: gaussian // 1: index into the actual distribution // 2: do something complex for the tails. // 3: index into the actual distribution plus gaussian for tails. // 4: similar to 3. // 5: laplace // class Stats { public: std::vector a_; float sum_; bool finalized_; float mean_; // cached float stddev_; // cached float b_; // cached int how_; public: Stats(int how) : sum_(0), finalized_(false), how_(how) {} void add(float x) { a_.push_back(x); sum_ += x; finalized_ = false; } void finalize() { finalized_ = true; int n = a_.size(); mean_ = sum_ / n; float var = 0; float bsum = 0; for (int i = 0; i < n; i++) { float y = a_[i] - mean_; var += y * y; bsum += fabs(y); } var /= n; stddev_ = sqrt(var); b_ = bsum / n; // prepare for binary search to find where values lie // in the distribution. if (how_ != 0 && how_ != 5) std::sort(a_.begin(), a_.end()); } float mean() { if (!finalized_) finalize(); return mean_; } float stddev() { if (!finalized_) finalize(); return stddev_; } // fraction of distribution that's less than x. // assumes normal distribution. // this is PHI(x), or the CDF at x, // or the integral from -infinity // to x of the PDF. float gaussian_problt(float x) { float SDs = (x - mean()) / stddev(); float frac = 0.5 * (1.0 + erf(SDs / sqrt(2.0))); return frac; } // https://en.wikipedia.org/wiki/Laplace_distribution // m and b from page 116 of Mark Owen's Practical Signal Processing. float laplace_problt(float x) { float m = mean(); float cdf; if (x < m) { cdf = 0.5 * exp((x - m) / b_); } else { cdf = 1.0 - 0.5 * exp(-(x - m) / b_); } return cdf; } // look into the actual distribution. float problt(float x) { if (!finalized_) finalize(); if (how_ == 0) { return gaussian_problt(x); } if (how_ == 5) { return laplace_problt(x); } // binary search. auto it = std::lower_bound(a_.begin(), a_.end(), x); int i = it - a_.begin(); int n = a_.size(); if (how_ == 1) { // index into the distribution. // works poorly for values that are off the ends // of the distribution, since those are all // mapped to 0.0 or 1.0, regardless of magnitude. return i / (float)n; } if (how_ == 2) { // use a kind of logistic regression for // values near the edges of the distribution. if (i < log_tail * n) { float x0 = a_[(int)(log_tail * n)]; float y = 1.0 / (1.0 + exp(-log_rate * (x - x0))); // y is 0..0.5 y /= 5; return y; } else if (i > (1 - log_tail) * n) { float x0 = a_[(int)((1 - log_tail) * n)]; float y = 1.0 / (1.0 + exp(-log_rate * (x - x0))); // y is 0.5..1 // we want (1-log_tail)..1 y -= 0.5; y *= 2; y *= log_tail; y += (1 - log_tail); return y; } else { return i / (float)n; } } if (how_ == 3) { // gaussian for values near the edge of the distribution. if (i < log_tail * n) { return gaussian_problt(x); } else if (i > (1 - log_tail) * n) { return gaussian_problt(x); } else { return i / (float)n; } } if (how_ == 4) { // gaussian for values outside the distribution. if (x < a_[0] || x > a_.back()) { return gaussian_problt(x); } else { return i / (float)n; } } return 0; } }; // a-priori probability of each of the 174 LDPC codeword // bits being one. measured from reconstructed correct // codewords, into ft8bits, then python bprob.py. // from ft8-n4 float apriori174[] = { 0.47, 0.32, 0.29, 0.37, 0.52, 0.36, 0.40, 0.42, 0.42, 0.53, 0.44, 0.44, 0.39, 0.46, 0.39, 0.38, 0.42, 0.43, 0.45, 0.51, 0.42, 0.48, 0.31, 0.45, 0.47, 0.53, 0.59, 0.41, 0.03, 0.50, 0.30, 0.26, 0.40, 0.65, 0.34, 0.49, 0.46, 0.49, 0.69, 0.40, 0.45, 0.45, 0.60, 0.46, 0.43, 0.49, 0.56, 0.45, 0.55, 0.51, 0.46, 0.37, 0.55, 0.52, 0.56, 0.55, 0.50, 0.01, 0.19, 0.70, 0.88, 0.75, 0.75, 0.74, 0.73, 0.18, 0.71, 0.35, 0.60, 0.58, 0.36, 0.60, 0.38, 0.50, 0.02, 0.01, 0.98, 0.48, 0.49, 0.54, 0.50, 0.49, 0.53, 0.50, 0.49, 0.49, 0.51, 0.51, 0.51, 0.47, 0.50, 0.53, 0.51, 0.46, 0.51, 0.51, 0.48, 0.51, 0.52, 0.50, 0.52, 0.51, 0.50, 0.49, 0.53, 0.52, 0.50, 0.46, 0.47, 0.48, 0.52, 0.50, 0.49, 0.51, 0.49, 0.49, 0.50, 0.50, 0.50, 0.50, 0.51, 0.50, 0.49, 0.49, 0.55, 0.49, 0.51, 0.48, 0.55, 0.49, 0.48, 0.50, 0.51, 0.50, 0.51, 0.50, 0.51, 0.53, 0.49, 0.54, 0.50, 0.48, 0.49, 0.46, 0.51, 0.51, 0.52, 0.49, 0.51, 0.49, 0.51, 0.50, 0.49, 0.50, 0.50, 0.47, 0.49, 0.52, 0.49, 0.51, 0.49, 0.48, 0.52, 0.48, 0.49, 0.47, 0.50, 0.48, 0.50, 0.49, 0.51, 0.51, 0.51, 0.49, }; class FT8 { public: std::thread *th_; float min_hz_; float max_hz_; std::vector samples_; // input to each pass std::vector nsamples_; // subtract from here int start_; // sample number of 0.5 seconds into samples[] int rate_; // samples/second double deadline_; // start time + budget double final_deadline_; // keep going this long if no decodes std::vector hints1_; std::vector hints2_; int pass_; float down_hz_; static std::mutex cb_mu_; cb_t cb_; // call-back into Python std::mutex hack_mu_; int hack_size_; int hack_off_; int hack_len_; float hack_0_; float hack_1_; const float *hack_data_; std::vector> hack_bins_; std::vector prevdecs_; Plan *plan32_; FT8( const std::vector &samples, float min_hz, float max_hz, int start, int rate, int hints1[], int hints2[], double deadline, double final_deadline, cb_t cb, std::vector prevdecs ) { samples_ = samples; min_hz_ = min_hz; max_hz_ = max_hz; prevdecs_ = prevdecs; start_ = start; rate_ = rate; deadline_ = deadline; final_deadline_ = final_deadline; cb_ = cb; down_hz_ = 0; for (int i = 0; hints1[i]; i++) { hints1_.push_back(hints1[i]); } for (int i = 0; hints2[i]; i++) { hints2_.push_back(hints2[i]); } hack_size_ = -1; hack_data_ = 0; hack_off_ = -1; hack_len_ = -1; plan32_ = 0; } ~FT8() { } // strength of costas block of signal with tone 0 at bi0, // and symbol zero at si0. float one_coarse_strength(const ffts_t &bins, int bi0, int si0) { int costas[] = {3, 1, 4, 0, 6, 5, 2}; assert(si0 >= 0 && si0 + 72 + 8 <= (int)bins.size()); assert(bi0 >= 0 && bi0 + 8 <= (int)bins[0].size()); float sig = 0.0; float noise = 0.0; if (coarse_all >= 0) { for (int si = 0; si < 79; si++) { float mx; int mxi = -1; float sum = 0; for (int i = 0; i < 8; i++) { float x = std::abs(bins[si0 + si][bi0 + i]); sum += x; if (mxi < 0 || x > mx) { mxi = i; mx = x; } } if (si >= 0 && si < 7) { float x = std::abs(bins[si0 + si][bi0 + costas[si - 0]]); sig += x; noise += sum - x; } else if (si >= 36 && si < 36 + 7) { float x = std::abs(bins[si0 + si][bi0 + costas[si - 36]]); sig += x; noise += sum - x; } else if (si >= 72 && si < 72 + 7) { float x = std::abs(bins[si0 + si][bi0 + costas[si - 72]]); sig += x; noise += sum - x; } else { sig += coarse_all * mx; noise += coarse_all * (sum - mx); } } } else { // coarse_all = -1 // just costas symbols for (int si = 0; si < 7; si++) { for (int bi = 0; bi < 8; bi++) { float x = 0; x += std::abs(bins[si0 + si][bi0 + bi]); x += std::abs(bins[si0 + 36 + si][bi0 + bi]); x += std::abs(bins[si0 + 72 + si][bi0 + bi]); if (bi == costas[si]) { sig += x; } else { noise += x; } } } } if (coarse_strength_how == 0) { return sig - noise; } else if (coarse_strength_how == 1) { return sig - noise / 7; } else if (coarse_strength_how == 2) { return sig / (noise / 7); } else if (coarse_strength_how == 3) { return sig / (sig + (noise / 7)); } else if (coarse_strength_how == 4) { return sig; } else if (coarse_strength_how == 5) { return sig / (sig + noise); } else if (coarse_strength_how == 6) { // this is it. return sig / noise; } else { return 0; } } // return symbol length in samples at the given rate. // insist on integer symbol lengths so that we can // use whole FFT bins. int blocksize(int rate) { // FT8 symbol length is 1920 at 12000 samples/second. int xblock = 1920 / (12000.0 / rate); assert(xblock == (int)xblock); int block = xblock; return block; } class Strength { public: float hz_; int off_; float strength_; // higher is better }; // // look for potential signals by searching FFT bins for Costas symbol // blocks. returns a vector of candidate positions. // std::vector coarse(const ffts_t &bins, int si0, int si1) { int block = blocksize(rate_); int nbins = bins[0].size(); float bin_hz = rate_ / (float)block; int min_bin = min_hz_ / bin_hz; int max_bin = max_hz_ / bin_hz; std::vector strengths; for (int bi = min_bin; bi < max_bin && bi + 8 <= nbins; bi++) { std::vector sv; for (int si = si0; si < si1 && si + 79 < (int)bins.size(); si++) { float s = one_coarse_strength(bins, bi, si); Strength st; st.strength_ = s; st.hz_ = bi * 6.25; st.off_ = si * block; sv.push_back(st); } if (sv.size() < 1) break; // save best ncoarse offsets, but require that they be separated // by at least one symbol time. std::sort(sv.begin(), sv.end(), [](const Strength &a, const Strength &b) -> bool { return a.strength_ > b.strength_; }); strengths.push_back(sv[0]); int nn = 1; for (int i = 1; nn < ncoarse && i < (int)sv.size(); i++) { if (std::abs(sv[i].off_ - sv[0].off_) > ncoarse_blocks * block) { strengths.push_back(sv[i]); nn++; } } } return strengths; } // // reduce the sample rate from arate to brate. // center hz0..hz1 in the new nyquist range. // but first filter to that range. // sets delta_hz to hz moved down. // std::vector reduce_rate(const std::vector &a, float hz0, float hz1, int arate, int brate, float &delta_hz) { assert(brate < arate); assert(hz1 - hz0 <= brate / 2); // the pass band is hz0..hz1 // stop bands are 0..hz00 and hz11..nyquist. float hz00, hz11; hz0 = std::max(0.0f, hz0 - reduce_extra); hz1 = std::min(arate / 2.0f, hz1 + reduce_extra); if (reduce_shoulder > 0) { hz00 = hz0 - reduce_shoulder; hz11 = hz1 + reduce_shoulder; } else { float mid = (hz0 + hz1) / 2; hz00 = mid - (brate * reduce_factor); hz00 = std::min(hz00, hz0); hz11 = mid + (brate * reduce_factor); hz11 = std::max(hz11, hz1); } int alen = a.size(); std::vector> bins1 = one_fft(a, 0, alen, "reduce_rate1", 0); int nbins1 = bins1.size(); float bin_hz = arate / (float)alen; if (reduce_how == 2) { // band-pass filter the FFT output. bins1 = fbandpass(bins1, bin_hz, hz00, hz0, hz1, hz11); } if (reduce_how == 3) { for (int i = 0; i < nbins1; i++) { if (i < (hz0 / bin_hz)) { bins1[i] = 0; } else if (i > (hz1 / bin_hz)) { bins1[i] = 0; } } } // shift down. int omid = ((hz0 + hz1) / 2) / bin_hz; int nmid = (brate / 4.0) / bin_hz; int delta = omid - nmid; // amount to move down assert(delta < nbins1); int blen = round(alen * (brate / (float)arate)); std::vector> bbins(blen / 2 + 1); for (int i = 0; i < (int)bbins.size(); i++) { if (delta > 0) { bbins[i] = bins1[i + delta]; } else { bbins[i] = bins1[i]; } } // use ifft to reduce the rate. std::vector vvv = one_ifft(bbins, "reduce_rate2"); delta_hz = delta * bin_hz; return vvv; } void go(int npasses) { // cache to avoid cost of fftw planner mutex. plan32_ = get_plan(32, "cache32"); if (0) { fprintf(stderr, "go: %.0f .. %.0f, %.0f, rate=%d\n", min_hz_, max_hz_, max_hz_ - min_hz_, rate_); } // trim to make samples_ a good size for FFTW. int nice_sizes[] = {18000, 18225, 36000, 36450, 54000, 54675, 72000, 72900, 144000, 145800, 216000, 218700, 0}; int nice = -1; for (int i = 0; nice_sizes[i]; i++) { int sz = nice_sizes[i]; if (fabs(samples_.size() - sz) < 0.05 * samples_.size()) { nice = sz; break; } } if (nice != -1) { samples_.resize(nice); } assert(min_hz_ >= 0 && max_hz_ + 50 <= rate_ / 2); // can we reduce the sample rate? int nrate = -1; for (int xrate = 100; xrate < rate_; xrate += 100) { if (xrate < rate_ && (oddrate || (rate_ % xrate) == 0)) { if (((max_hz_ - min_hz_) + 50 + 2 * go_extra) < nyquist * (xrate / 2)) { nrate = xrate; break; } } } if (do_reduce && nrate > 0 && nrate < rate_ * 0.75) { // filter and reduce the sample rate from rate_ to nrate. double t0 = now(); int osize = samples_.size(); float delta_hz; // how much it moved down samples_ = reduce_rate( samples_, min_hz_ - 3.1 - go_extra, max_hz_ + 50 - 3.1 + go_extra, rate_, nrate, delta_hz ); double t1 = now(); if (t1 - t0 > 0.1) { fprintf(stderr, "reduce oops, size %d -> %d, rate %d -> %d, took %.2f\n", osize, (int)samples_.size(), rate_, nrate, t1 - t0); } if (0) { fprintf(stderr, "%.0f..%.0f, range %.0f, rate %d -> %d, delta hz %.0f, %.6f sec\n", min_hz_, max_hz_, max_hz_ - min_hz_, rate_, nrate, delta_hz, t1 - t0); } if (delta_hz > 0) { down_hz_ = delta_hz; // to adjust hz for Python. min_hz_ -= down_hz_; max_hz_ -= down_hz_; for (int i = 0; i < (int)prevdecs_.size(); i++) { prevdecs_[i].hz0 -= delta_hz; prevdecs_[i].hz1 -= delta_hz; } } assert(max_hz_ + 50 < nrate / 2); assert(min_hz_ >= 0); float ratio = nrate / (float)rate_; rate_ = nrate; start_ = round(start_ * ratio); } int block = blocksize(rate_); // start_ is the sample number of 0.5 seconds, the nominal start time. // make sure there's at least tplus*rate_ samples after the end. if (start_ + tplus * rate_ + 79 * block + block > samples_.size()) { int need = start_ + tplus * rate_ + 79 * block - samples_.size(); // round up to a whole second, to ease fft plan caching. if ((need % rate_) != 0) need += rate_ - (need % rate_); std::default_random_engine generator; std::uniform_int_distribution distribution(0, samples_.size() - 1); auto rnd = std::bind(distribution, generator); std::vector v(need); for (int i = 0; i < need; i++) { // v[i] = 0; v[i] = samples_[rnd()]; } samples_.insert(samples_.end(), v.begin(), v.end()); } int si0 = (start_ - tminus * rate_) / block; if (si0 < 0) { si0 = 0; } int si1 = (start_ + tplus * rate_) / block; // a copy from which to subtract. nsamples_ = samples_; int any = 0; for (int i = 0; i < (int)prevdecs_.size(); i++) { auto d = prevdecs_[i]; if (d.hz0 >= min_hz_ && d.hz0 <= max_hz_) { // reconstruct correct 79 symbols from LDPC output. std::vector re79 = recode(d.bits); // fine up hz/off again now that we have more samples float best_hz = (d.hz0 + d.hz1) / 2.0; float best_off = d.off; // seconds search_both_known(samples_, rate_, re79, best_hz, best_off, best_hz, best_off); // subtract from nsamples_. subtract(re79, best_hz, best_hz, best_off); any += 1; } } if (any) { samples_ = nsamples_; } for (pass_ = 0; pass_ < npasses; pass_++) { double total_remaining = deadline_ - now(); double remaining = total_remaining / (npasses - pass_); if (pass_ == 0) { remaining *= pass0_frac; } double deadline = now() + remaining; int new_decodes = 0; samples_ = nsamples_; std::vector order; // // search coarsely for Costas blocks. // in fractions of bins in off and hz. // // just do this once, re-use for every fractional fft_shift // and down_v7_f() to 200 sps. std::vector> bins = one_fft(samples_, 0, samples_.size(), "go1", 0); for (int hz_frac_i = 0; hz_frac_i < coarse_hz_n; hz_frac_i++) { // shift down by hz_frac float hz_frac = hz_frac_i * (6.25 / coarse_hz_n); std::vector samples1; if (hz_frac_i == 0) { samples1 = samples_; } else { samples1 = fft_shift_f(bins, rate_, hz_frac); } for (int off_frac_i = 0; off_frac_i < coarse_off_n; off_frac_i++) { int off_frac = off_frac_i * (block / coarse_off_n); ffts_t bins = ffts(samples1, off_frac, block, "go2"); std::vector oo = coarse(bins, si0, si1); for (int i = 0; i < (int)oo.size(); i++) { oo[i].hz_ += hz_frac; oo[i].off_ += off_frac; } order.insert(order.end(), oo.begin(), oo.end()); } } // // sort strongest-first. // std::sort(order.begin(), order.end(), [](const Strength &a, const Strength &b) -> bool { return a.strength_ > b.strength_; }); char already[2000]; // XXX for (int i = 0; i < (int)(sizeof(already) / sizeof(already[0])); i++) { already[i] = 0; } for (int ii = 0; ii < (int)order.size(); ii++) { double tt = now(); if (ii > 0 && tt > deadline && (tt > deadline_ || new_decodes >= pass_threshold) && (pass_ < npasses - 1 || tt > final_deadline_) ) { break; } float hz = order[ii].hz_; if (already[(int)round(hz / already_hz)]) { continue; } int off = order[ii].off_; int ret = one(bins, samples_.size(), hz, off); if (ret) { if (ret == 2) { new_decodes++; } already[(int)round(hz / already_hz)] = 1; } } } // pass } // // what's the strength of the Costas sync blocks of // the signal starting at hz and off? // float one_strength(const std::vector &samples200, float hz, int off) { int bin0 = round(hz / 6.25); int costas[] = {3, 1, 4, 0, 6, 5, 2}; int starts[] = {0, 36, 72}; float sig = 0; float noise = 0; for (int which = 0; which < 3; which++) { int start = starts[which]; for (int si = 0; si < 7; si++) { auto fft = one_fft(samples200, off + (si + start) * 32, 32, "one_strength", plan32_); for (int bi = 0; bi < 8; bi++) { float x = std::abs(fft[bin0 + bi]); if (bi == costas[si]) { sig += x; } else { noise += x; } } } } if (strength_how == 0) { return sig - noise; } else if (strength_how == 1) { return sig - noise / 7; } else if (strength_how == 2) { return sig / (noise / 7); } else if (strength_how == 3) { return sig / (sig + (noise / 7)); } else if (strength_how == 4) { return sig; } else if (strength_how == 5) { return sig / (sig + noise); } else if (strength_how == 6) { return sig / noise; } else { return 0; } } // // given a complete known signal's symbols in syms, // how strong is it? used to look for the best // offset and frequency at which to subtract a // decoded signal. // float one_strength_known( const std::vector &samples, int rate, const std::vector &syms, float hz, int off ) { int block = blocksize(rate); assert(syms.size() == 79); int bin0 = round(hz / 6.25); float sig = 0; float noise = 0; float sum7 = 0; std::complex prev = 0; for (int si = 0; si < 79; si += known_sparse) { auto fft = one_fft(samples, off + si * block, block, "one_strength_known", 0); if (known_strength_how == 7) { std::complex c = fft[bin0 + syms[si]]; if (si > 0) { sum7 += std::abs(c - prev); } prev = c; } else { for (int bi = 0; bi < 8; bi++) { float x = std::abs(fft[bin0 + bi]); if (bi == syms[si]) { sig += x; } else { noise += x; } } } } if (known_strength_how == 0) { return sig - noise; } else if (known_strength_how == 1) { return sig - noise / 7; } else if (known_strength_how == 2) { return sig / (noise / 7); } else if (known_strength_how == 3) { return sig / (sig + (noise / 7)); } else if (known_strength_how == 4) { return sig; } else if (known_strength_how == 5) { return sig / (sig + noise); } else if (known_strength_how == 6) { return sig / noise; } else if (known_strength_how == 7) { return -sum7; } else { return 0; } } int search_time_fine( const std::vector &samples200, int off0, int offN, float hz, int gran, float &str ) { if (off0 < 0) off0 = 0; // // shift in frequency to put hz at 25. // only shift the samples we need, both for speed, // and try to always shift down the same number of samples // to make it easier to cache fftw plans. // int len = (offN - off0) + 79 * 32 + 32; if (off0 + len > (int)samples200.size()) { // len = samples200.size() - off0; // don't provoke random-length FFTs. return -1; } std::vector downsamples200 = shift200(samples200, off0, len, hz); int best_off = -1; float best_sum = 0.0; for (int g = 0; g <= (offN - off0) && g + 79 * 32 <= len; g += gran) { float sum = one_strength(downsamples200, 25, g); if (sum > best_sum || best_off == -1) { best_off = g; best_sum = sum; } } str = best_sum; assert(best_off >= 0); return off0 + best_off; } int search_time_fine_known( const std::vector> &bins, int rate, const std::vector &syms, int off0, int offN, float hz, int gran, float &str ) { if (off0 < 0) off0 = 0; // nearest FFT bin center. float hz0 = round(hz / 6.25) * 6.25; // move hz to hz0, so it is centered in a symbol-sized bin. std::vector downsamples = fft_shift_f(bins, rate, hz - hz0); int best_off = -1; int block = blocksize(rate); float best_sum = 0.0; for (int g = off0; g <= offN; g += gran) { if (g >= 0 && g + 79 * block <= (int)downsamples.size()) { float sum = one_strength_known(downsamples, rate, syms, hz0, g); if (sum > best_sum || best_off == -1) { best_off = g; best_sum = sum; } } } if (best_off < 0) return -1; str = best_sum; return best_off; } // // search for costas blocks in an MxN time/frequency grid. // hz0 +/- hz_win in hz_inc increments. hz0 should be near 25. // off0 +/- off_win in off_inc incremenents. // std::vector search_both( const std::vector &samples200, float hz0, int hz_n, float hz_win, int off0, int off_n, int off_win ) { assert(hz0 >= 25 - 6.25 / 2 && hz0 <= 25 + 6.25 / 2); std::vector strengths; float hz_inc = 2 * hz_win / hz_n; int off_inc = round(2 * off_win / (float)off_n); if (off_inc < 1) off_inc = 1; for (float hz = hz0 - hz_win; hz <= hz0 + hz_win + 0.01; hz += hz_inc) { float str = 0; int off = search_time_fine(samples200, off0 - off_win, off0 + off_win, hz, off_inc, str); if (off >= 0) { Strength st; st.hz_ = hz; st.off_ = off; st.strength_ = str; strengths.push_back(st); } } return strengths; } void search_both_known( const std::vector &samples, int rate, const std::vector &syms, float hz0, float off_secs0, // seconds float &hz_out, float &off_out ) { assert(hz0 >= 0 && hz0 + 50 < rate / 2); int off0 = round(off_secs0 * (float)rate); int off_win = third_off_win * blocksize(rate_); if (off_win < 1) off_win = 1; int off_inc = trunc((2.0 * off_win) / (third_off_n - 1.0)); if (off_inc < 1) off_inc = 1; int got_best = 0; float best_hz = 0; int best_off = 0; float best_strength = 0; std::vector> bins = one_fft(samples, 0, samples.size(), "stfk", 0); float hz_start, hz_inc, hz_end; if (third_hz_n > 1) { hz_inc = (2.0 * third_hz_win) / (third_hz_n - 1.0); hz_start = hz0 - third_hz_win; hz_end = hz0 + third_hz_win; } else { hz_inc = 1; hz_start = hz0; hz_end = hz0; } for (float hz = hz_start; hz <= hz_end + 0.0001; hz += hz_inc) { float strength = 0; int off = search_time_fine_known(bins, rate, syms, off0 - off_win, off0 + off_win, hz, off_inc, strength); if (off >= 0 && (got_best == 0 || strength > best_strength)) { got_best = 1; best_hz = hz; best_off = off; best_strength = strength; } } if (got_best) { hz_out = best_hz; off_out = best_off / (float)rate; } } // // shift frequency by shifting the bins of one giant FFT. // so no problem with phase mismatch &c at block boundaries. // surprisingly fast at 200 samples/second. // shifts *down* by hz. // std::vector fft_shift( const std::vector &samples, int off, int len, int rate, float hz ) { std::vector> bins; // horrible hack to avoid repeated FFTs on the same input. hack_mu_.lock(); if ((int)samples.size() == hack_size_ && samples.data() == hack_data_ && off == hack_off_ && len == hack_len_ && samples[0] == hack_0_ && samples[1] == hack_1_) { bins = hack_bins_; } else { bins = one_fft(samples, off, len, "fft_shift", 0); hack_bins_ = bins; hack_size_ = samples.size(); hack_off_ = off; hack_len_ = len; hack_0_ = samples[0]; hack_1_ = samples[1]; hack_data_ = samples.data(); } hack_mu_.unlock(); return fft_shift_f(bins, rate, hz); } // // shift down by hz. // std::vector fft_shift_f( const std::vector> &bins, int rate, float hz ) { int nbins = bins.size(); int len = (nbins - 1) * 2; float bin_hz = rate / (float)len; int down = round(hz / bin_hz); std::vector> bins1(nbins); for (int i = 0; i < nbins; i++) { int j = i + down; if (j >= 0 && j < nbins) { bins1[i] = bins[j]; } else { bins1[i] = 0; } } std::vector out = one_ifft(bins1, "fft_shift"); return out; } // shift the frequency by a fraction of 6.25, // to center hz on bin 4 (25 hz). std::vector shift200( const std::vector &samples200, int off, int len, float hz ) { if (std::abs(hz - 25) < 0.001 && off == 0 && len == (int)samples200.size()) { return samples200; } else { return fft_shift(samples200, off, len, 200, hz - 25.0); } // return hilbert_shift(samples200, hz - 25.0, hz - 25.0, 200); } // returns a mini-FFT of 79 8-tone symbols. ffts_t extract(const std::vector &samples200, float, int off) { ffts_t bins3 = ffts(samples200, off, 32, "extract"); ffts_t m79(79); for (int si = 0; si < 79; si++) { m79[si].resize(8); if (si < (int)bins3.size()) { for (int bi = 0; bi < 8; bi++) { auto x = bins3[si][4 + bi]; m79[si][bi] = x; } } else { for (int bi = 0; bi < 8; bi++) { m79[si][bi] = 0; } } } return m79; } // // m79 is a 79x8 array of complex. // ffts_t un_gray_code_c(const ffts_t &m79) { ffts_t m79a(79); int map[] = {0, 1, 3, 2, 6, 4, 5, 7}; for (int si = 0; si < 79; si++) { m79a[si].resize(8); for (int bi = 0; bi < 8; bi++) { m79a[si][map[bi]] = m79[si][bi]; } } return m79a; } // // m79 is a 79x8 array of float. // std::vector> un_gray_code_r(const std::vector> &m79) { std::vector> m79a(79); int map[] = {0, 1, 3, 2, 6, 4, 5, 7}; for (int si = 0; si < 79; si++) { m79a[si].resize(8); for (int bi = 0; bi < 8; bi++) { m79a[si][map[bi]] = m79[si][bi]; } } return m79a; } // // normalize levels by windowed median. // this helps, but why? // std::vector> convert_to_snr(const std::vector> &m79) { if (snr_how < 0 || snr_win < 0) return m79; // // for each symbol time, what's its "noise" level? // std::vector mm(79); for (int si = 0; si < 79; si++) { std::vector v(8); float sum = 0.0; for (int bi = 0; bi < 8; bi++) { float x = m79[si][bi]; v[bi] = x; sum += x; } if (snr_how != 1) std::sort(v.begin(), v.end()); if (snr_how == 0) { // median mm[si] = (v[3] + v[4]) / 2; } else if (snr_how == 1) { mm[si] = sum / 8; } else if (snr_how == 2) { // all but strongest tone. mm[si] = (v[0] + v[1] + v[2] + v[3] + v[4] + v[5] + v[6]) / 7; } else if (snr_how == 3) { mm[si] = v[0]; // weakest tone } else if (snr_how == 4) { mm[si] = v[7]; // strongest tone } else if (snr_how == 5) { mm[si] = v[6]; // second-strongest tone } else { mm[si] = 1.0; } } // we're going to take a windowed average. std::vector winwin; if (snr_win > 0) { winwin = blackman(2 * snr_win + 1); } else { winwin.push_back(1.0); } std::vector> n79(79); for (int si = 0; si < 79; si++) { float sum = 0; for (int dd = si - snr_win; dd <= si + snr_win; dd++) { int wi = dd - (si - snr_win); if (dd >= 0 && dd < 79) { sum += mm[dd] * winwin[wi]; } else if (dd < 0) { sum += mm[0] * winwin[wi]; } else { sum += mm[78] * winwin[wi]; } } n79[si].resize(8); for (int bi = 0; bi < 8; bi++) { n79[si][bi] = m79[si][bi] / sum; } } return n79; } // // normalize levels by windowed median. // this helps, but why? // std::vector>> c_convert_to_snr( const std::vector>> &m79 ) { if (snr_how < 0 || snr_win < 0) return m79; // // for each symbol time, what's its "noise" level? // std::vector mm(79); for (int si = 0; si < 79; si++) { std::vector v(8); float sum = 0.0; for (int bi = 0; bi < 8; bi++) { float x = std::abs(m79[si][bi]); v[bi] = x; sum += x; } if (snr_how != 1) std::sort(v.begin(), v.end()); if (snr_how == 0) { // median mm[si] = (v[3] + v[4]) / 2; } else if (snr_how == 1) { mm[si] = sum / 8; } else if (snr_how == 2) { // all but strongest tone. mm[si] = (v[0] + v[1] + v[2] + v[3] + v[4] + v[5] + v[6]) / 7; } else if (snr_how == 3) { mm[si] = v[0]; // weakest tone } else if (snr_how == 4) { mm[si] = v[7]; // strongest tone } else if (snr_how == 5) { mm[si] = v[6]; // second-strongest tone } else { mm[si] = 1.0; } } // we're going to take a windowed average. std::vector winwin; if (snr_win > 0) { winwin = blackman(2 * snr_win + 1); } else { winwin.push_back(1.0); } std::vector>> n79(79); for (int si = 0; si < 79; si++) { float sum = 0; for (int dd = si - snr_win; dd <= si + snr_win; dd++) { int wi = dd - (si - snr_win); if (dd >= 0 && dd < 79) { sum += mm[dd] * winwin[wi]; } else if (dd < 0) { sum += mm[0] * winwin[wi]; } else { sum += mm[78] * winwin[wi]; } } n79[si].resize(8); for (int bi = 0; bi < 8; bi++) { n79[si][bi] = m79[si][bi] / sum; } } return n79; } // // statistics to decide soft probabilities, // to drive LDPC decoder. // distribution of strongest tones, and // distribution of noise. // void make_stats( const std::vector> &m79, Stats &bests, Stats &all ) { int costas[] = {3, 1, 4, 0, 6, 5, 2}; for (int si = 0; si < 79; si++) { if (si < 7 || (si >= 36 && si < 36 + 7) || si >= 72) { // Costas. int ci; if (si >= 72) ci = si - 72; else if (si >= 36) ci = si - 36; else ci = si; for (int bi = 0; bi < 8; bi++) { float x = m79[si][bi]; all.add(x); if (bi == costas[ci]) { bests.add(x); } } } else { float mx = 0; for (int bi = 0; bi < 8; bi++) { float x = m79[si][bi]; if (x > mx) mx = x; all.add(x); } bests.add(mx); } } } // // convert 79x8 complex FFT bins to magnitudes. // // exploits local phase coherence by decreasing magnitudes of bins // whose phase is far from the phases of nearby strongest tones. // // relies on each tone being reasonably well centered in its FFT bin // (in time and frequency) so that each tone completes an integer // number of cycles and thus preserves phase from one symbol to the // next. // std::vector> soft_c2m(const ffts_t &c79) { std::vector> m79(79); std::vector raw_phases(79); // of strongest tone in each symbol time for (int si = 0; si < 79; si++) { m79[si].resize(8); int mxi = -1; float mx; float mx_phase; for (int bi = 0; bi < 8; bi++) { float x = std::abs(c79[si][bi]); m79[si][bi] = x; if (mxi < 0 || x > mx) { mxi = bi; mx = x; mx_phase = std::arg(c79[si][bi]); // -pi .. pi } } raw_phases[si] = mx_phase; } if (soft_phase_win <= 0) return m79; // phase around each symbol. std::vector phases(79); // for each symbol time, median of nearby phases for (int si = 0; si < 79; si++) { std::vector v; for (int si1 = si - soft_phase_win; si1 <= si + soft_phase_win; si1++) { if (si1 >= 0 && si1 < 79) { float x = raw_phases[si1]; v.push_back(x); } } // choose the phase that has the lowest total distance to other // phases. like median but avoids -pi..pi wrap-around. int n = v.size(); int best = -1; float best_score = 0; for (int i = 0; i < n; i++) { float score = 0; for (int j = 0; j < n; j++) { if (i == j) continue; float d = fabs(v[i] - v[j]); if (d > M_PI) d = 2 * M_PI - d; score += d; } if (best == -1 || score < best_score) { best = i; best_score = score; } } phases[si] = v[best]; } // project each tone against the median phase around that symbol time. for (int si = 0; si < 79; si++) { for (int bi = 0; bi < 8; bi++) { float mag = std::abs(c79[si][bi]); float angle = std::arg(c79[si][bi]); float d = angle - phases[si]; float factor = 0.1; if (d < M_PI / 2 && d > -M_PI / 2) { factor = cos(d); } m79[si][bi] = factor * mag; } } return m79; } // // guess the probability that a bit is zero vs one, // based on strengths of strongest tones that would // give it those values. for soft LDPC decoding. // // returns log-likelihood, zero is positive, one is negative. // float bayes( float best_zero, float best_one, int lli, Stats &bests, Stats &all ) { float maxlog = 4.97; float ll = 0; float pzero = 0.5; float pone = 0.5; if (use_apriori) { pzero = 1.0 - apriori174[lli]; pone = apriori174[lli]; } // // Bayes combining rule normalization from: // http://cs.wellesley.edu/~anderson/writing/naive-bayes.pdf // // a = P(zero)P(e0|zero)P(e1|zero) // b = P(one)P(e0|one)P(e1|one) // p = a / (a + b) // // also see Mark Owen's book Practical Signal Processing, // Chapter 6. // // zero float a = pzero * bests.problt(best_zero) * (1.0 - all.problt(best_one)); if (bayes_how == 1) a *= all.problt(all.mean() + (best_zero - best_one)); // one float b = pone * bests.problt(best_one) * (1.0 - all.problt(best_zero)); if (bayes_how == 1) b *= all.problt(all.mean() + (best_one - best_zero)); float p; if (a + b == 0) { p = 0.5; } else { p = a / (a + b); } if (1 - p == 0.0) { ll = maxlog; } else { ll = log(p / (1 - p)); } if (ll > maxlog) ll = maxlog; if (ll < -maxlog) ll = -maxlog; return ll; } // // c79 is 79x8 complex tones, before un-gray-coding. // void soft_decode(const ffts_t &c79, float ll174[]) { std::vector> m79(79); // m79 = absolute values of c79. // still pre-un-gray-coding so we know which // are the correct Costas tones. m79 = soft_c2m(c79); m79 = convert_to_snr(m79); // statistics to decide soft probabilities. // distribution of strongest tones, and // distribution of noise. Stats bests(problt_how_sig); Stats all(problt_how_noise); make_stats(m79, bests, all); m79 = un_gray_code_r(m79); int lli = 0; for (int i79 = 0; i79 < 79; i79++) { if (i79 < 7 || (i79 >= 36 && i79 < 36 + 7) || i79 >= 72) { // Costas, skip continue; } // for each of the three bits, look at the strongest tone // that would make it a zero, and the strongest tone that // would make it a one. use Bayes to decide which is more // likely, comparing each against the distribution of noise // and the distribution of strongest tones. // most-significant-bit first. for (int biti = 0; biti < 3; biti++) { // tone numbers that make this bit zero or one. int zeroi[4]; int onei[4]; if (biti == 0) { // high bit zeroi[0] = 0; zeroi[1] = 1; zeroi[2] = 2; zeroi[3] = 3; onei[0] = 4; onei[1] = 5; onei[2] = 6; onei[3] = 7; } if (biti == 1) { // middle bit zeroi[0] = 0; zeroi[1] = 1; zeroi[2] = 4; zeroi[3] = 5; onei[0] = 2; onei[1] = 3; onei[2] = 6; onei[3] = 7; } if (biti == 2) { // low bit zeroi[0] = 0; zeroi[1] = 2; zeroi[2] = 4; zeroi[3] = 6; onei[0] = 1; onei[1] = 3; onei[2] = 5; onei[3] = 7; } // strongest tone that would make this bit be zero. int got_best_zero = 0; float best_zero = 0; for (int i = 0; i < 4; i++) { float x = m79[i79][zeroi[i]]; if (got_best_zero == 0 || x > best_zero) { got_best_zero = 1; best_zero = x; } } // strongest tone that would make this bit be one. int got_best_one = 0; float best_one = 0; for (int i = 0; i < 4; i++) { float x = m79[i79][onei[i]]; if (got_best_one == 0 || x > best_one) { got_best_one = 1; best_one = x; } } float ll = bayes(best_zero, best_one, lli, bests, all); ll174[lli++] = ll; } } assert(lli == 174); } // // c79 is 79x8 complex tones, before un-gray-coding. // void c_soft_decode(const ffts_t &c79x, float ll174[]) { ffts_t c79 = c_convert_to_snr(c79x); int costas[] = {3, 1, 4, 0, 6, 5, 2}; std::complex maxes[79]; for (int i = 0; i < 79; i++) { std::complex m; if (i < 7) { // Costas. m = c79[i][costas[i]]; } else if (i >= 36 && i < 36 + 7) { // Costas. m = c79[i][costas[i - 36]]; } else if (i >= 72) { // Costas. m = c79[i][costas[i - 72]]; } else { int got = 0; for (int j = 0; j < 8; j++) { if (got == 0 || std::abs(c79[i][j]) > std::abs(m)) { got = 1; m = c79[i][j]; } } } maxes[i] = m; } std::vector> m79(79); for (int i = 0; i < 79; i++) { m79[i].resize(8); for (int j = 0; j < 8; j++) { std::complex c = c79[i][j]; int n = 0; float sum = 0; for (int k = i - c_soft_win; k <= i + c_soft_win; k++) { if (k < 0 || k >= 79) continue; if (k == i) { sum -= c_soft_weight * std::abs(c); } else { // we're expecting all genuine tones to have // about the same phase and magnitude. // so set m79[i][j] to the distance from the // phase/magnitude predicted by surrounding // genuine-looking tones. std::complex c1 = maxes[k]; std::complex d = c1 - c; sum += std::abs(d); } n += 1; } m79[i][j] = 0 - (sum / n); } } // statistics to decide soft probabilities. // distribution of strongest tones, and // distribution of noise. Stats bests(problt_how_sig); Stats all(problt_how_noise); make_stats(m79, bests, all); m79 = un_gray_code_r(m79); int lli = 0; for (int i79 = 0; i79 < 79; i79++) { if (i79 < 7 || (i79 >= 36 && i79 < 36 + 7) || i79 >= 72) { // Costas, skip continue; } // for each of the three bits, look at the strongest tone // that would make it a zero, and the strongest tone that // would make it a one. use Bayes to decide which is more // likely, comparing each against the distribution of noise // and the distribution of strongest tones. // most-significant-bit first. for (int biti = 0; biti < 3; biti++) { // tone numbers that make this bit zero or one. int zeroi[4]; int onei[4]; if (biti == 0) { // high bit zeroi[0] = 0; zeroi[1] = 1; zeroi[2] = 2; zeroi[3] = 3; onei[0] = 4; onei[1] = 5; onei[2] = 6; onei[3] = 7; } if (biti == 1) { // middle bit zeroi[0] = 0; zeroi[1] = 1; zeroi[2] = 4; zeroi[3] = 5; onei[0] = 2; onei[1] = 3; onei[2] = 6; onei[3] = 7; } if (biti == 2) { // low bit zeroi[0] = 0; zeroi[1] = 2; zeroi[2] = 4; zeroi[3] = 6; onei[0] = 1; onei[1] = 3; onei[2] = 5; onei[3] = 7; } // strongest tone that would make this bit be zero. int got_best_zero = 0; float best_zero = 0; for (int i = 0; i < 4; i++) { float x = m79[i79][zeroi[i]]; if (got_best_zero == 0 || x > best_zero) { got_best_zero = 1; best_zero = x; } } // strongest tone that would make this bit be one. int got_best_one = 0; float best_one = 0; for (int i = 0; i < 4; i++) { float x = m79[i79][onei[i]]; if (got_best_one == 0 || x > best_one) { got_best_one = 1; best_one = x; } } float ll = bayes(best_zero, best_one, lli, bests, all); ll174[lli++] = ll; } } assert(lli == 174); } // // turn 79 symbol numbers into 174 bits. // strip out the three Costas sync blocks, // leaving 58 symbol numbers. // each represents three bits. // (all post-un-gray-code). // str is per-symbol strength; must be positive. // each returned element is < 0 for 1, > 0 for zero, // scaled by str. // std::vector extract_bits(const std::vector &syms, const std::vector str) { assert(syms.size() == 79); assert(str.size() == 79); std::vector bits; for (int si = 0; si < 79; si++) { if (si < 7 || (si >= 36 && si < 36 + 7) || si >= 72) { // costas -- skip } else { bits.push_back((syms[si] & 4) == 0 ? str[si] : -str[si]); bits.push_back((syms[si] & 2) == 0 ? str[si] : -str[si]); bits.push_back((syms[si] & 1) == 0 ? str[si] : -str[si]); } } return bits; } // decode successive pairs of symbols. exploits the likelyhood // that they have the same phase, by summing the complex // correlations for each possible pair and using the max. void soft_decode_pairs( const ffts_t &m79x, float ll174[] ) { ffts_t m79 = c_convert_to_snr(m79x); struct BitInfo { float zero; // strongest correlation that makes it zero float one; // and one }; std::vector bitinfo(79 * 3); for (int i = 0; i < (int)bitinfo.size(); i++) { bitinfo[i].zero = 0; bitinfo[i].one = 0; } Stats all(problt_how_noise); Stats bests(problt_how_sig); int map[] = {0, 1, 3, 2, 6, 4, 5, 7}; // un-gray-code for (int si = 0; si < 79; si += 2) { float mx = 0; float corrs[8 * 8]; for (int s1 = 0; s1 < 8; s1++) { for (int s2 = 0; s2 < 8; s2++) { // sum up the correlations. std::complex csum = m79[si][s1]; if (si + 1 < 79) csum += m79[si + 1][s2]; float x = std::abs(csum); corrs[s1 * 8 + s2] = x; if (x > mx) mx = x; all.add(x); // first symbol int i = map[s1]; for (int bit = 0; bit < 3; bit++) { int bitind = (si + 0) * 3 + (2 - bit); if ((i & (1 << bit))) { // symbol i would make this bit a one. if (x > bitinfo[bitind].one) { bitinfo[bitind].one = x; } } else { // symbol i would make this bit a zero. if (x > bitinfo[bitind].zero) { bitinfo[bitind].zero = x; } } } // second symbol if (si + 1 < 79) { i = map[s2]; for (int bit = 0; bit < 3; bit++) { int bitind = (si + 1) * 3 + (2 - bit); if ((i & (1 << bit))) { // symbol i would make this bit a one. if (x > bitinfo[bitind].one) { bitinfo[bitind].one = x; } } else { // symbol i would make this bit a zero. if (x > bitinfo[bitind].zero) { bitinfo[bitind].zero = x; } } } } } } if (si == 0 || si == 36 || si == 72) { bests.add(corrs[3 * 8 + 1]); } else if (si == 2 || si == 38 || si == 74) { bests.add(corrs[4 * 8 + 0]); } else if (si == 4 || si == 40 || si == 76) { bests.add(corrs[6 * 8 + 5]); } else { bests.add(mx); } } int lli = 0; for (int si = 0; si < 79; si++) { if (si < 7 || (si >= 36 && si < 36 + 7) || si >= 72) { // costas continue; } for (int i = 0; i < 3; i++) { float best_zero = bitinfo[si * 3 + i].zero; float best_one = bitinfo[si * 3 + i].one; // ll174[lli++] = best_zero > best_one ? 4.99 : -4.99; float ll = bayes(best_zero, best_one, lli, bests, all); ll174[lli++] = ll; } } assert(lli == 174); } void soft_decode_triples( const ffts_t &m79x, float ll174[] ) { ffts_t m79 = c_convert_to_snr(m79x); struct BitInfo { float zero; // strongest correlation that makes it zero float one; // and one }; std::vector bitinfo(79 * 3); for (int i = 0; i < (int)bitinfo.size(); i++) { bitinfo[i].zero = 0; bitinfo[i].one = 0; } Stats all(problt_how_noise); Stats bests(problt_how_sig); int map[] = {0, 1, 3, 2, 6, 4, 5, 7}; // un-gray-code for (int si = 0; si < 79; si += 3) { float mx = 0; float corrs[8 * 8 * 8]; for (int s1 = 0; s1 < 8; s1++) { for (int s2 = 0; s2 < 8; s2++) { for (int s3 = 0; s3 < 8; s3++) { std::complex csum = m79[si][s1]; if (si + 1 < 79) csum += m79[si + 1][s2]; if (si + 2 < 79) csum += m79[si + 2][s3]; float x = std::abs(csum); corrs[s1 * 64 + s2 * 8 + s3] = x; if (x > mx) mx = x; all.add(x); // first symbol int i = map[s1]; for (int bit = 0; bit < 3; bit++) { int bitind = (si + 0) * 3 + (2 - bit); if ((i & (1 << bit))) { // symbol i would make this bit a one. if (x > bitinfo[bitind].one) { bitinfo[bitind].one = x; } } else { // symbol i would make this bit a zero. if (x > bitinfo[bitind].zero) { bitinfo[bitind].zero = x; } } } // second symbol if (si + 1 < 79) { i = map[s2]; for (int bit = 0; bit < 3; bit++) { int bitind = (si + 1) * 3 + (2 - bit); if ((i & (1 << bit))) { // symbol i would make this bit a one. if (x > bitinfo[bitind].one) { bitinfo[bitind].one = x; } } else { // symbol i would make this bit a zero. if (x > bitinfo[bitind].zero) { bitinfo[bitind].zero = x; } } } } // third symbol if (si + 2 < 79) { i = map[s3]; for (int bit = 0; bit < 3; bit++) { int bitind = (si + 2) * 3 + (2 - bit); if ((i & (1 << bit))) { // symbol i would make this bit a one. if (x > bitinfo[bitind].one) { bitinfo[bitind].one = x; } } else { // symbol i would make this bit a zero. if (x > bitinfo[bitind].zero) { bitinfo[bitind].zero = x; } } } } } } } // costas: 3, 1, 4, 0, 6, 5, 2 if (si == 0 || si == 36 || si == 72) { bests.add(corrs[3 * 64 + 1 * 8 + 4]); } else if (si == 3 || si == 39 || si == 75) { bests.add(corrs[0 * 64 + 6 * 8 + 5]); } else { bests.add(mx); } } int lli = 0; for (int si = 0; si < 79; si++) { if (si < 7 || (si >= 36 && si < 36 + 7) || si >= 72) { // costas continue; } for (int i = 0; i < 3; i++) { float best_zero = bitinfo[si * 3 + i].zero; float best_one = bitinfo[si * 3 + i].one; // ll174[lli++] = best_zero > best_one ? 4.99 : -4.99; float ll = bayes(best_zero, best_one, lli, bests, all); ll174[lli++] = ll; } } assert(lli == 174); } // // given log likelyhood for each bit, try LDPC and OSD decoders. // on success, puts corrected 174 bits into a174[]. // int decode(const float ll174[], int a174[], int use_osd, std::string &comment) { void ldpc_decode(float llcodeword[], int iters, int plain[], int *ok); void ldpc_decode_log(float codeword[], int iters, int plain[], int *ok); int plain[174]; // will be 0/1 bits. int ldpc_ok = 0; // 83 will mean success. ldpc_decode((float *)ll174, ldpc_iters, plain, &ldpc_ok); int ok_thresh = 83; // 83 is perfect if (ldpc_ok >= ok_thresh) { // plain[] is 91 systematic data bits, 83 parity bits. for (int i = 0; i < 174; i++) { a174[i] = plain[i]; } if (check_crc(a174)) { // success! return 1; } } if (use_osd && osd_depth >= 0 && ldpc_ok >= osd_ldpc_thresh) { extern int osd_decode(float codeword[174], int depth, int out[91], int *); extern void ldpc_encode(int plain[91], int codeword[174]); int oplain[91]; int got_depth = -1; int osd_ok = osd_decode((float *)ll174, osd_depth, oplain, &got_depth); if (osd_ok) { // reconstruct all 174. comment += "OSD-" + std::to_string(got_depth) + "-" + std::to_string(ldpc_ok); ldpc_encode(oplain, a174); return 1; } } return 0; } // // bandpass filter some FFT bins. // smooth transition from stop-band to pass-band, // so that it's not a brick-wall filter, so that it // doesn't ring. // std::vector> fbandpass( const std::vector> &bins0, float bin_hz, float low_outer, // start of transition float low_inner, // start of flat area float high_inner, // end of flat area float high_outer // end of transition ) { // assert(low_outer >= 0); assert(low_outer <= low_inner); assert(low_inner <= high_inner); assert(high_inner <= high_outer); // assert(high_outer <= bin_hz * bins0.size()); int nbins = bins0.size(); std::vector> bins1(nbins); for (int i = 0; i < nbins; i++) { float ihz = i * bin_hz; // cos(x)+flat+cos(x) taper float factor; if (ihz <= low_outer || ihz >= high_outer) { factor = 0; } else if (ihz >= low_outer && ihz < low_inner) { // rising shoulder #if 1 factor = (ihz - low_outer) / (low_inner - low_outer); // 0 .. 1 #else float theta = (ihz - low_outer) / (low_inner - low_outer); // 0 .. 1 theta -= 1; // -1 .. 0 theta *= 3.14159; // -pi .. 0 factor = cos(theta); // -1 .. 1 factor = (factor + 1) / 2; // 0 .. 1 #endif } else if (ihz > high_inner && ihz <= high_outer) { // falling shoulder #if 1 factor = (high_outer - ihz) / (high_outer - high_inner); // 1 .. 0 #else float theta = (high_outer - ihz) / (high_outer - high_inner); // 1 .. 0 theta = 1.0 - theta; // 0 .. 1 theta *= 3.14159; // 0 .. pi factor = cos(theta); // 1 .. -1 factor = (factor + 1) / 2; // 1 .. 0 #endif } else { factor = 1.0; } bins1[i] = bins0[i] * factor; } return bins1; } // // move hz down to 25, filter+convert to 200 samples/second. // // like fft_shift(). one big FFT, move bins down and // zero out those outside the band, then IFFT, // then re-sample. // // XXX maybe merge w/ fft_shift() / shift200(). // std::vector down_v7(const std::vector &samples, float hz) { int len = samples.size(); std::vector> bins = one_fft(samples, 0, len, "down_v7a", 0); return down_v7_f(bins, len, hz); } std::vector down_v7_f(const std::vector> &bins, int len, float hz) { int nbins = bins.size(); float bin_hz = rate_ / (float)len; int down = round((hz - 25) / bin_hz); std::vector> bins1(nbins); for (int i = 0; i < nbins; i++) { int j = i + down; if (j >= 0 && j < nbins) { bins1[i] = bins[j]; } else { bins1[i] = 0; } } // now filter to fit in 200 samples/second. float low_inner = 25.0 - shoulder200_extra; float low_outer = low_inner - shoulder200; if (low_outer < 0) low_outer = 0; float high_inner = 75 - 6.25 + shoulder200_extra; float high_outer = high_inner + shoulder200; if (high_outer > 100) high_outer = 100; bins1 = fbandpass(bins1, bin_hz, low_outer, low_inner, high_inner, high_outer); // convert back to time domain and down-sample to 200 samples/second. int blen = round(len * (200.0 / rate_)); std::vector> bbins(blen / 2 + 1); for (int i = 0; i < (int)bbins.size(); i++) bbins[i] = bins1[i]; std::vector out = one_ifft(bbins, "down_v7b"); return out; } // // putative start of signal is at hz and symbol si0. // // return 2 if it decodes to a brand-new message. // return 1 if it decodes but we've already seen it, // perhaps in a different pass. // return 0 if we could not decode. // // XXX merge with one_iter(). // int one(const std::vector> &bins, int len, float hz, int off) { // // set up to search for best frequency and time offset. // // // move down to 25 hz and re-sample to 200 samples/second, // i.e. 32 samples/symbol. // std::vector samples200 = down_v7_f(bins, len, hz); int off200 = round((off / (float)rate_) * 200.0); int ret = one_iter(samples200, off200, hz); return ret; } // return 2 if it decodes to a brand-new message. // return 1 if it decodes but we've already seen it, // perhaps in a different pass. // return 0 if we could not decode. int one_iter(const std::vector &samples200, int best_off, float hz_for_cb) { if (do_second) { std::vector strengths = search_both(samples200, 25, second_hz_n, second_hz_win, best_off, second_off_n, second_off_win * 32); // // sort strongest-first. // std::sort(strengths.begin(), strengths.end(), [](const Strength &a, const Strength &b) -> bool { return a.strength_ > b.strength_; }); for (int i = 0; i < (int)strengths.size() && i < second_count; i++) { float hz = strengths[i].hz_; int off = strengths[i].off_; int ret = one_iter1(samples200, off, hz, hz_for_cb, hz_for_cb); if (ret > 0) { return ret; } } } else { int ret = one_iter1(samples200, best_off, 25, hz_for_cb, hz_for_cb); return ret; } return 0; } // // estimate SNR, yielding numbers vaguely similar to WSJT-X. // m79 is a 79x8 complex FFT output. // float guess_snr(const ffts_t &m79) { int costas[] = {3, 1, 4, 0, 6, 5, 2}; float noises = 0; float signals = 0; for (int i = 0; i < 7; i++) { signals += std::abs(m79[i][costas[i]]); signals += std::abs(m79[36 + i][costas[i]]); signals += std::abs(m79[72 + i][costas[i]]); noises += std::abs(m79[i][(costas[i] + 4) % 8]); noises += std::abs(m79[36 + i][(costas[i] + 4) % 8]); noises += std::abs(m79[72 + i][(costas[i] + 4) % 8]); } for (int i = 0; i < 79; i++) { if (i < 7 || (i >= 36 && i < 36 + 7) || (i >= 72 && i < 72 + 7)) continue; std::vector v(8); for (int j = 0; j < 8; j++) { v[j] = std::abs(m79[i][j]); } std::sort(v.begin(), v.end()); signals += v[7]; // strongest tone, probably the signal noises += (v[2] + v[3] + v[4]) / 3; } noises /= 79; signals /= 79; noises *= noises; // square yields power signals *= signals; float raw = signals / noises; raw -= 1; // turn (s+n)/n into s/n if (raw < 0.1) raw = 0.1; raw /= (2500.0 / 2.7); // 2.7 hz noise b/w -> 2500 hz b/w float snr = 10 * log10(raw); snr += 5; snr *= 1.4; return snr; } // // compare phases of successive symbols to guess whether // the starting offset is a little too high or low. // we expect each symbol to have the same phase. // an error in causes the phase to advance at a steady rate. // so if hz is wrong, we expect the phase to advance // or retard at a steady pace. // an error in offset causes each symbol to start at // a phase that depends on the symbol's frequency; // a particular offset error causes a phase error // that depends on frequency. // hz0 is actual FFT bin number of m79[...][0] (always 4). // // the output adj_hz is relative to the FFT bin center; // a positive number means the real signal seems to be // a bit higher in frequency that the bin center. // // adj_off is the amount to change the offset, in samples. // should be subtracted from offset. // void fine(const ffts_t &m79, int, float &adj_hz, float &adj_off) { adj_hz = 0.0; adj_off = 0.0; // tone number for each of the 79 symbols. int sym[79]; float symval[79]; float symphase[79]; int costas[] = {3, 1, 4, 0, 6, 5, 2}; for (int i = 0; i < 79; i++) { if (i < 7) { sym[i] = costas[i]; } else if (i >= 36 && i < 36 + 7) { sym[i] = costas[i - 36]; } else if (i >= 72) { sym[i] = costas[i - 72]; } else { int mxj = -1; float mx = 0; for (int j = 0; j < 8; j++) { float x = std::abs(m79[i][j]); if (mxj < 0 || x > mx) { mx = x; mxj = j; } } sym[i] = mxj; } symphase[i] = std::arg(m79[i][sym[i]]); symval[i] = std::abs(m79[i][sym[i]]); } float sum = 0; float weight_sum = 0; for (int i = 0; i < 79 - 1; i++) { float d = symphase[i + 1] - symphase[i]; while (d > M_PI) d -= 2 * M_PI; while (d < -M_PI) d += 2 * M_PI; float w = symval[i]; sum += d * w; weight_sum += w; } float mean = sum / weight_sum; float err_rad = mean; // radians per symbol time float err_hz = (err_rad / (2 * M_PI)) / 0.16; // cycles per symbol time // if each symbol's phase is a bit more than we expect, // that means the real frequency is a bit higher // than we thought, so increase our estimate. adj_hz = err_hz; // // now think about offset error. // // the higher tones have many cycles per // symbol -- e.g. tone 7 has 11 cycles // in each symbol. a one- or two-sample // offset error at such a high tone will // change the phase by pi or more, // which makes the phase-to-samples // conversion ambiguous. so only try // to distinguish early-ontime-late, // not the amount. // int nearly = 0; int nlate = 0; float early = 0.0; float late = 0.0; for (int i = 1; i < 79; i++) { float ph0 = std::arg(m79[i - 1][sym[i - 1]]); float ph = std::arg(m79[i][sym[i]]); float d = ph - ph0; d -= err_rad; // correct for hz error. while (d > M_PI) d -= 2 * M_PI; while (d < -M_PI) d += 2 * M_PI; // if off is correct, each symbol will have the same phase (modulo // the above hz correction), since each FFT bin holds an integer // number of cycles. // if off is too small, the phase is altered by the trailing part // of the previous symbol. if the previous tone was lower, // the phase won't have advanced as much as expected, and // this symbol's phase will be lower than the previous phase. // if the previous tone was higher, the phase will be more // advanced than expected. thus off too small leads to // a phase difference that's the reverse of the tone difference. // if off is too high, then the FFT started a little way into // this symbol, which causes the phase to be advanced a bit. // of course the previous symbol's phase was also advanced // too much. if this tone is higher than the previous symbol, // its phase will be more advanced than the previous. if // less, less. // the point: if successive phases and tone differences // are positively correlated, off is too high. if negatively, // too low. // fine_max_tone: // if late, ignore if a high tone, since ambiguous. // if early, ignore if prev is a high tone. if (sym[i] > sym[i - 1]) { if (d > 0 && sym[i] <= fine_max_tone) { nlate++; late += d / std::abs(sym[i] - sym[i - 1]); } if (d < 0 && sym[i - 1] <= fine_max_tone) { nearly++; early += fabs(d) / std::abs(sym[i] - sym[i - 1]); } } else if (sym[i] < sym[i - 1]) { if (d > 0 && sym[i - 1] <= fine_max_tone) { nearly++; early += d / std::abs(sym[i] - sym[i - 1]); } if (d < 0 && sym[i] <= fine_max_tone) { nlate++; late += fabs(d) / std::abs(sym[i] - sym[i - 1]); } } } if (nearly > 0) early /= nearly; if (nlate > 0) late /= nlate; // printf("early %d %.1f, late %d %.1f\n", nearly, early, nlate, late); // assumes 32 samples/symbol. if (nearly > 2 * nlate) { adj_off = round(32 * early / fine_thresh); if (adj_off > fine_max_off) adj_off = fine_max_off; } else if (nlate > 2 * nearly) { adj_off = 0 - round(32 * late / fine_thresh); if (fabs(adj_off) > fine_max_off) adj_off = -fine_max_off; } } // // the signal is at roughly 25 hz in samples200. // // return 2 if it decodes to a brand-new message. // return 1 if it decodes but we've already seen it, // perhaps in a different pass. // return 0 if we could not decode. // int one_iter1( const std::vector &samples200x, int best_off, float best_hz, float hz0_for_cb, float hz1_for_cb ) { // put best_hz in the middle of bin 4, at 25.0. std::vector samples200 = shift200(samples200x, 0, samples200x.size(), best_hz); // mini 79x8 FFT. ffts_t m79 = extract(samples200, 25, best_off); // look at symbol-to-symbol phase change to try // to improve best_hz and best_off. if (do_fine_hz || do_fine_off) { float adj_hz = 0; float adj_off = 0; fine(m79, 4, adj_hz, adj_off); if (do_fine_hz == 0) adj_hz = 0; if (do_fine_off == 0) adj_off = 0; if (fabs(adj_hz) < 6.25 / 4 && fabs(adj_off) < 4) { best_hz += adj_hz; best_off += round(adj_off); if (best_off < 0) best_off = 0; samples200 = shift200(samples200x, 0, samples200x.size(), best_hz); m79 = extract(samples200, 25, best_off); } } float ll174[174]; if (soft_ones) { if (soft_ones == 1) { soft_decode(m79, ll174); } else { c_soft_decode(m79, ll174); } int ret = try_decode(samples200, ll174, best_hz, best_off, hz0_for_cb, hz1_for_cb, 1, "", m79); if (ret) return ret; } if (soft_pairs) { float p174[174]; soft_decode_pairs(m79, p174); int ret = try_decode(samples200, p174, best_hz, best_off, hz0_for_cb, hz1_for_cb, 1, "", m79); if (ret) return ret; if (soft_ones == 0) memcpy(ll174, p174, sizeof(ll174)); } if (soft_triples) { float p174[174]; soft_decode_triples(m79, p174); int ret = try_decode(samples200, p174, best_hz, best_off, hz0_for_cb, hz1_for_cb, 1, "", m79); if (ret) return ret; } if (use_hints) { for (int hi = 0; hi < (int)hints1_.size(); hi++) { int h = hints1_[hi]; // 28-bit number, goes in ll174 0..28 if (use_hints == 2 && h != 2) { // just CQ continue; } float n174[174]; for (int i = 0; i < 174; i++) { if (i < 28) { int bit = h & (1 << 27); if (bit) { n174[i] = -4.97; } else { n174[i] = 4.97; } h <<= 1; } else { n174[i] = ll174[i]; } } int ret = try_decode(samples200, n174, best_hz, best_off, hz0_for_cb, hz1_for_cb, 0, "hint1", m79); if (ret) { return ret; } } } if (use_hints == 1) { for (int hi = 0; hi < (int)hints2_.size(); hi++) { int h = hints2_[hi]; // 28-bit number, goes in ll174 29:29+28 float n174[174]; for (int i = 0; i < 174; i++) { if (i >= 29 && i < 29 + 28) { int bit = h & (1 << 27); if (bit) { n174[i] = -4.97; } else { n174[i] = 4.97; } h <<= 1; } else { n174[i] = ll174[i]; } } int ret = try_decode(samples200, n174, best_hz, best_off, hz0_for_cb, hz1_for_cb, 0, "hint2", m79); if (ret) { return ret; } } } return 0; } // // subtract a corrected decoded signal from nsamples_, // perhaps revealing a weaker signal underneath, // to be decoded in a subsequent pass. // // re79[] holds the error-corrected symbol numbers. // void subtract( const std::vector re79, float hz0, float hz1, float off_sec ) { int block = blocksize(rate_); float bin_hz = rate_ / (float)block; int off0 = off_sec * rate_; float mhz = (hz0 + hz1) / 2.0; int bin0 = round(mhz / bin_hz); // move nsamples so that signal is centered in bin0. float diff0 = (bin0 * bin_hz) - hz0; float diff1 = (bin0 * bin_hz) - hz1; std::vector moved = hilbert_shift(nsamples_, diff0, diff1, rate_); ffts_t bins = ffts(moved, off0, block, "subtract"); if (bin0 + 8 > (int)bins[0].size()) return; if ((int)bins.size() < 79) return; std::vector phases(79); std::vector amps(79); for (int i = 0; i < 79; i++) { int sym = bin0 + re79[i]; std::complex c = bins[i][sym]; phases[i] = std::arg(c); // FFT multiplies magnitudes by number of bins, // or half the number of samples. amps[i] = std::abs(c) / (block / 2.0); } int ramp = round(block * subtract_ramp); if (ramp < 1) ramp = 1; // initial ramp part of first symbol. { int sym = bin0 + re79[0]; float phase = phases[0]; float amp = amps[0]; float hz = 6.25 * sym; float dtheta = 2 * M_PI / (rate_ / hz); // advance per sample for (int jj = 0; jj < ramp; jj++) { float theta = phase + jj * dtheta; float x = amp * cos(theta); x *= jj / (float)ramp; int iii = off0 + block * 0 + jj; moved[iii] -= x; } } for (int si = 0; si < 79; si++) { int sym = bin0 + re79[si]; float phase = phases[si]; float amp = amps[si]; float hz = 6.25 * sym; float dtheta = 2 * M_PI / (rate_ / hz); // advance per sample // we've already done the first ramp for this symbol. // now for the steady part between ramps. for (int jj = ramp; jj < block - ramp; jj++) { float theta = phase + jj * dtheta; float x = amp * cos(theta); int iii = off0 + block * si + jj; moved[iii] -= x; } // now the two ramps, from us to the next symbol. // we need to smoothly change the frequency, // approximating wsjt-x's gaussian frequency shift, // and also end up matching the next symbol's phase, // which is often different from this symbol due // to inaccuracies in hz or offset. // at start of this symbol's off-ramp. float theta = phase + (block - ramp) * dtheta; float hz1; float phase1; if (si + 1 >= 79) { hz1 = hz; phase1 = phase; } else { int sym1 = bin0 + re79[si + 1]; hz1 = 6.25 * sym1; phase1 = phases[si + 1]; } float dtheta1 = 2 * M_PI / (rate_ / hz1); // add this to dtheta for each sample, to gradually // change the frequency. float inc = (dtheta1 - dtheta) / (2.0 * ramp); // after we've applied all those inc's, what will the // phase be at the end of the next symbol's initial ramp, // if we don't do anything to correct it? float actual = theta + dtheta * 2.0 * ramp + inc * 4.0 * ramp * ramp / 2.0; // what phase does the next symbol want to be at when // its on-ramp finishes? float target = phase1 + dtheta1 * ramp; // ??? while (fabs(target - actual) > M_PI) { if (target < actual) target += 2 * M_PI; else target -= 2 * M_PI; } // adj is to be spread evenly over the off-ramp and on-ramp samples. float adj = target - actual; int end = block + ramp; if (si == 79 - 1) end = block; for (int jj = block - ramp; jj < end; jj++) { int iii = off0 + block * si + jj; float x = amp * cos(theta); // trail off to zero at the very end. if (si == 79 - 1) x *= 1.0 - ((jj - (block - ramp)) / (float)ramp); moved[iii] -= x; theta += dtheta; dtheta += inc; theta += adj / (2.0 * ramp); } } nsamples_ = hilbert_shift(moved, -diff0, -diff1, rate_); } // // decode, give to callback, and subtract. // // return 2 if it decodes to a brand-new message. // return 1 if it decodes but we've already seen it, // perhaps in a different pass. // return 0 if we could not decode. // int try_decode( const std::vector &samples200, float ll174[174], float best_hz, int best_off_samples, float hz0_for_cb, float, int use_osd, const char *comment1, const ffts_t &m79 ) { int a174[174]; std::string comment(comment1); if (decode(ll174, a174, use_osd, comment)) { // a174 is corrected 91 bits of plain message plus 83 bits of LDPC parity. // how many of the corrected 174 bits match the received signal in ll174? int correct_bits = 0; for (int i = 0; i < 174; i++) { if (ll174[i] < 0 && a174[i] == 1) { correct_bits += 1; } else if (ll174[i] > 0 && a174[i] == 0) { correct_bits += 1; } } // reconstruct correct 79 symbols from LDPC output. std::vector re79 = recode(a174); if (do_third == 1) { // fine-tune offset and hz for better subtraction. float best_off = best_off_samples / 200.0; search_both_known( samples200, 200, re79, best_hz, best_off, best_hz, best_off ); best_off_samples = round(best_off * 200.0); } // convert starting sample # from 200 samples/second back to rate_. // also hz. float best_off = best_off_samples / 200.0; // convert to seconds best_hz = hz0_for_cb + (best_hz - 25.0); if (do_third == 2) { // fine-tune offset and hz for better subtraction. search_both_known( samples_, rate_, re79, best_hz, best_off, best_hz, best_off ); } float snr = guess_snr(m79); if (cb_ != 0) { cb_mu_.lock(); int ret = cb_( a174, best_hz + down_hz_, best_off, comment.c_str(), snr, pass_, correct_bits ); cb_mu_.unlock(); if (ret == 2) { // a new decode. subtract it from nsamples_. subtract(re79, best_hz, best_hz, best_off); } return ret; } return 1; } else { return 0; } } // // given 174 bits corrected by LDPC, work // backwards to the symbols that must have // been sent. // used to help ensure that subtraction subtracts // at the right place. // std::vector recode(int a174[]) { int i174 = 0; int costas[] = {3, 1, 4, 0, 6, 5, 2}; std::vector out79; for (int i79 = 0; i79 < 79; i79++) { if (i79 < 7) { out79.push_back(costas[i79]); } else if (i79 >= 36 && i79 < 36 + 7) { out79.push_back(costas[i79 - 36]); } else if (i79 >= 72) { out79.push_back(costas[i79 - 72]); } else { int sym = (a174[i174 + 0] << 2) | (a174[i174 + 1] << 1) | (a174[i174 + 2] << 0); i174 += 3; // gray code int map[] = {0, 1, 3, 2, 5, 6, 4, 7}; sym = map[sym]; out79.push_back(sym); } } assert(out79.size() == 79); assert(i174 == 174); return out79; } }; std::mutex FT8::cb_mu_; // // Python calls these. // void entry( float xsamples[], int nsamples, int start, int rate, float min_hz, float max_hz, int hints1[], int hints2[], double time_left, double total_time_left, cb_t cb, int nprevdecs, struct cdecode *xprevdecs ) { double t0 = now(); double deadline = t0 + time_left; double final_deadline = t0 + total_time_left; // decodes from previous runs, for subtraction. std::vector prevdecs; for (int i = 0; i < nprevdecs; i++) { prevdecs.push_back(xprevdecs[i]); } std::vector samples(nsamples); for (int i = 0; i < nsamples; i++) { samples[i] = xsamples[i]; } if (min_hz < 0) { min_hz = 0; } if (max_hz > rate / 2) { max_hz = rate / 2; } float per = (max_hz - min_hz) / nthreads; std::vector thv; for (int i = 0; i < nthreads; i++) { float hz0 = min_hz + i * per; if (i > 0 || overlap_edges) hz0 -= overlap; float hz1 = min_hz + (i + 1) * per; if (i != nthreads - 1 || overlap_edges) hz1 += overlap; hz0 = std::max(hz0, 0.0f); hz1 = std::min(hz1, (rate / 2.0f) - 50); FT8 *ft8 = new FT8( samples, hz0, hz1, start, rate, hints1, hints2, deadline, final_deadline, cb, prevdecs ); int npasses = nprevdecs > 0 ? npasses_two : npasses_one; ft8->th_ = new std::thread([ft8, npasses] () { ft8->go(npasses); }); thv.push_back(ft8); } for (int i = 0; i < (int)thv.size(); i++) { thv[i]->th_->join(); delete thv[i]->th_; delete thv[i]; } } float set(char *param, char *val) { struct sss { const char *name; void *addr; int type; // 0 int, 1 float }; struct sss params[] = { {"snr_win", &snr_win, 0}, {"snr_how", &snr_how, 0}, {"ldpc_iters", &ldpc_iters, 0}, {"shoulder200", &shoulder200, 1}, {"shoulder200_extra", &shoulder200_extra, 1}, {"second_hz_n", &second_hz_n, 0}, {"second_hz_win", &second_hz_win, 1}, {"second_off_n", &second_off_n, 0}, {"second_off_win", &second_off_win, 1}, {"third_hz_n", &third_hz_n, 0}, {"third_hz_win", &third_hz_win, 1}, {"third_off_n", &third_off_n, 0}, {"third_off_win", &third_off_win, 1}, {"log_tail", &log_tail, 1}, {"log_rate", &log_rate, 1}, {"problt_how_noise", &problt_how_noise, 0}, {"problt_how_sig", &problt_how_sig, 0}, {"use_apriori", &use_apriori, 0}, {"use_hints", &use_hints, 0}, {"win_type", &win_type, 0}, {"osd_depth", &osd_depth, 0}, {"ncoarse", &ncoarse, 0}, {"ncoarse_blocks", &ncoarse_blocks, 0}, {"tminus", &tminus, 1}, {"tplus", &tplus, 1}, {"coarse_off_n", &coarse_off_n, 0}, {"coarse_hz_n", &coarse_hz_n, 0}, {"already_hz", &already_hz, 1}, {"nthreads", &nthreads, 0}, {"npasses_one", &npasses_one, 0}, {"npasses_two", &npasses_two, 0}, {"overlap", &overlap, 1}, {"nyquist", &nyquist, 1}, {"oddrate", &oddrate, 0}, {"osd_ldpc_thresh", &osd_ldpc_thresh, 0}, {"pass0_frac", &pass0_frac, 1}, {"go_extra", &go_extra, 1}, {"reduce_how", &reduce_how, 0}, {"do_reduce", &do_reduce, 0}, {"pass_threshold", &pass_threshold, 0}, {"strength_how", &strength_how, 0}, {"known_strength_how", &known_strength_how, 0}, {"reduce_shoulder", &reduce_shoulder, 1}, {"reduce_factor", &reduce_factor, 1}, {"reduce_extra", &reduce_extra, 1}, {"overlap_edges", &overlap_edges, 0}, {"coarse_strength_how", &coarse_strength_how, 0}, {"coarse_all", &coarse_all, 1}, {"second_count", &second_count, 0}, {"fftw_type", &fftw_type, 0}, {"soft_phase_win", &soft_phase_win, 0}, {"subtract_ramp", &subtract_ramp, 1}, {"soft_pairs", &soft_pairs, 0}, {"soft_triples", &soft_triples, 0}, {"do_second", &do_second, 0}, {"do_fine_hz", &do_fine_hz, 0}, {"do_fine_off", &do_fine_off, 0}, {"do_third", &do_third, 0}, {"fine_thresh", &fine_thresh, 1}, {"fine_max_off", &fine_max_off, 0}, {"fine_max_tone", &fine_max_tone, 0}, {"known_sparse", &known_sparse, 0}, {"soft_ones", &soft_ones, 0}, {"c_soft_weight", &c_soft_weight, 1}, {"c_soft_win", &c_soft_win, 0}, {"bayes_how", &bayes_how, 0}, }; int nparams = sizeof(params) / sizeof(params[0]); for (int i = 0; i < nparams; i++) { if (strcmp(param, params[i].name) == 0) { if (val[0]) { if (params[i].type == 0) { *(int *)params[i].addr = round(atof(val)); } else if (params[i].type == 1) { *(float *)params[i].addr = atof(val); } else { return 0; } } if (params[i].type == 0) { return *(int *)params[i].addr; } else if (params[i].type == 1) { return *(float *)params[i].addr; } else { fprintf(stderr, "weird type %d\n", params[i].type); return 0; } } } fprintf(stderr, "ft8.cc set(%s, %s) unknown parameter\n", param, val); exit(1); return 0; } } // namespace FT8