/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, 2018 Edouard Griffiths, F4EXB // // Copyright (C) 2017 Sergey Kostanbaev, Fairwaves Inc. // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "xtrx/devicextrx.h" #include "xtrxinputsettings.h" #include "xtrxinputthread.h" XTRXInputThread::XTRXInputThread(struct xtrx_dev *dev, unsigned int nbChannels, unsigned int uniqueChannelIndex, QObject* parent) : QThread(parent), m_running(false), m_dev(dev), m_nbChannels(nbChannels), m_uniqueChannelIndex(uniqueChannelIndex), m_iqOrder(true) { qDebug("XTRXInputThread::XTRXInputThread: nbChannels: %u uniqueChannelIndex: %u", nbChannels, uniqueChannelIndex); m_channels = new Channel[2]; for (unsigned int i = 0; i < 2; i++) { m_channels[i].m_convertBuffer.resize(DeviceXTRX::blockSize, Sample{0,0}); } } XTRXInputThread::~XTRXInputThread() { qDebug("XTRXInputThread::~XTRXInputThread"); if (m_running) { stopWork(); } delete[] m_channels; } void XTRXInputThread::startWork() { if (m_running) { return; // return if running already } m_startWaitMutex.lock(); start(); while (!m_running) { m_startWaiter.wait(&m_startWaitMutex, 100); } m_startWaitMutex.unlock(); } void XTRXInputThread::stopWork() { if (!m_running) { return; // return if not running } m_running = false; wait(); } void XTRXInputThread::run() { int res; m_running = true; m_startWaiter.wakeAll(); unsigned int nbFifos = getNbFifos(); if ((m_nbChannels != 0) && (nbFifos != 0)) { xtrx_run_params params; xtrx_run_params_init(¶ms); params.dir = XTRX_RX; params.rx.chs = XTRX_CH_AB; params.rx.wfmt = XTRX_WF_16; params.rx.hfmt = XTRX_IQ_INT16; params.rx_stream_start = 2*DeviceXTRX::blockSize; // was 2*8192 params.rx.paketsize = 2*DeviceXTRX::blockSize; if (m_nbChannels == 1) { qDebug("XTRXInputThread::run: SI mode for channel #%u", m_uniqueChannelIndex); params.rx.flags |= XTRX_RSP_SISO_MODE; if (m_uniqueChannelIndex == 1) { params.rx.flags |= XTRX_RSP_SWAP_AB; } } res = xtrx_run_ex(m_dev, ¶ms); if (res != 0) { qCritical("XTRXInputThread::run: could not start stream err:%d", res); m_running = false; } else { std::this_thread::sleep_for(std::chrono::milliseconds(50)); qDebug("XTRXInputThread::run: stream started"); } const unsigned int elemSize = 4; // XTRX uses 4 byte I+Q samples std::vector> buffMem(m_nbChannels, std::vector(elemSize*DeviceXTRX::blockSize)); std::vector buffs(m_nbChannels); for (std::size_t i = 0; i < m_nbChannels; i++) { buffs[i] = buffMem[i].data(); } xtrx_recv_ex_info_t nfo; nfo.samples = DeviceXTRX::blockSize; nfo.buffer_count = m_nbChannels; nfo.buffers = (void* const*) buffs.data(); nfo.flags = RCVEX_DONT_INSER_ZEROS | RCVEX_DROP_OLD_ON_OVERFLOW; while (m_running) { res = xtrx_recv_sync_ex(m_dev, &nfo); if (res < 0) { qCritical("XTRXInputThread::run read error: %d", res); qDebug("XTRXInputThread::run: out_samples: %u out_events: %u", nfo.out_samples, nfo.out_events); break; } if (nfo.out_events & RCVEX_EVENT_OVERFLOW) { qDebug("XTRXInputThread::run: overflow"); } if (m_nbChannels > 1) { callbackMI((const qint16*) buffs[0], (const qint16*) buffs[1], 2 * nfo.out_samples); } else { if (m_iqOrder) { callbackSIIQ((const qint16*) buffs[0], 2 * nfo.out_samples); } else { callbackSIQI((const qint16*) buffs[0], 2 * nfo.out_samples); } } } res = xtrx_stop(m_dev, XTRX_RX); if (res != 0) { qCritical("XTRXInputThread::run: could not stop stream"); } else { std::this_thread::sleep_for(std::chrono::milliseconds(50)); qDebug("XTRXInputThread::run: stream stopped"); } } else { qWarning("XTRXInputThread::run: no channels or FIFO allocated. Aborting"); } m_running = false; } unsigned int XTRXInputThread::getNbFifos() { unsigned int fifoCount = 0; for (unsigned int i = 0; i < 2; i++) { if (m_channels[i].m_sampleFifo) { fifoCount++; } } return fifoCount; } void XTRXInputThread::setLog2Decimation(unsigned int channel, unsigned int log2_decim) { if (channel < 2) { m_channels[channel].m_log2Decim = log2_decim; } } unsigned int XTRXInputThread::getLog2Decimation(unsigned int channel) const { if (channel < 2) { return m_channels[channel].m_log2Decim; } else { return 0; } } void XTRXInputThread::setFifo(unsigned int channel, SampleSinkFifo *sampleFifo) { if (channel < 2) { m_channels[channel].m_sampleFifo = sampleFifo; } } SampleSinkFifo *XTRXInputThread::getFifo(unsigned int channel) { if (channel < 2) { return m_channels[channel].m_sampleFifo; } else { return 0; } } void XTRXInputThread::callbackSIIQ(const qint16* buf, qint32 len) { SampleVector::iterator it = m_channels[m_uniqueChannelIndex].m_convertBuffer.begin(); if (m_channels[m_uniqueChannelIndex].m_log2Decim == 0) { m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate1(&it, buf, len); } else { switch (m_channels[m_uniqueChannelIndex].m_log2Decim) { case 1: m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate2_cen(&it, buf, len); break; case 2: m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate4_cen(&it, buf, len); break; case 3: m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate8_cen(&it, buf, len); break; case 4: m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate16_cen(&it, buf, len); break; case 5: m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate32_cen(&it, buf, len); break; case 6: m_channels[m_uniqueChannelIndex].m_decimatorsIQ.decimate64_cen(&it, buf, len); break; default: break; } } m_channels[m_uniqueChannelIndex].m_sampleFifo->write(m_channels[m_uniqueChannelIndex].m_convertBuffer.begin(), it); } void XTRXInputThread::callbackSIQI(const qint16* buf, qint32 len) { SampleVector::iterator it = m_channels[m_uniqueChannelIndex].m_convertBuffer.begin(); if (m_channels[m_uniqueChannelIndex].m_log2Decim == 0) { m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate1(&it, buf, len); } else { switch (m_channels[m_uniqueChannelIndex].m_log2Decim) { case 1: m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate2_cen(&it, buf, len); break; case 2: m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate4_cen(&it, buf, len); break; case 3: m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate8_cen(&it, buf, len); break; case 4: m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate16_cen(&it, buf, len); break; case 5: m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate32_cen(&it, buf, len); break; case 6: m_channels[m_uniqueChannelIndex].m_decimatorsQI.decimate64_cen(&it, buf, len); break; default: break; } } m_channels[m_uniqueChannelIndex].m_sampleFifo->write(m_channels[m_uniqueChannelIndex].m_convertBuffer.begin(), it); } void XTRXInputThread::callbackMI(const qint16* buf0, const qint16* buf1, qint32 len) { unsigned int uniqueChannelIndex = m_uniqueChannelIndex; // channel 0 m_uniqueChannelIndex = 0; if (m_iqOrder) { callbackSIIQ(buf0, len); } else { callbackSIQI(buf0, len); } // channel 1 m_uniqueChannelIndex = 1; if (m_iqOrder) { callbackSIIQ(buf1, len); } else { callbackSIQI(buf1, len); } m_uniqueChannelIndex = uniqueChannelIndex; }