/* * Reed-Solomon -- Reed-Solomon encoder / decoder library * * Copyright (c) 2014 Hard Consulting Corporation. * Copyright (c) 2006 Phil Karn, KA9Q * * It may be used under the terms of the GNU Lesser General Public License (LGPL). * * Simplified version of https://github.com/pjkundert/ezpwd-reed-solomon which * seems to be the fastest open-source decoder. * */ #ifndef REEDSOLOMON_H #define REEDSOLOMON_H #include #include #include #include #include #include // Preprocessor defines available: // // EZPWD_NO_MOD_TAB -- define to force no "modnn" Galois modulo table acceleration // //#define EZPWD_NO_MOD_TAB namespace ReedSolomon { // // reed_solomon_base - Reed-Solomon codec generic base class // class reed_solomon_base { public: virtual size_t datum() const = 0; // a data element's bits virtual size_t symbol() const = 0; // a symbol's bits virtual int size() const = 0; // R-S block size (maximum total symbols) virtual int nroots() const = 0; // R-S roots (parity symbols) virtual int load() const = 0; // R-S net payload (data symbols) virtual ~reed_solomon_base() {} reed_solomon_base() {} // // {en,de}code -- Compute/Correct errors/erasures in a Reed-Solomon encoded container // /// For decode, optionally specify some known erasure positions (up to nroots()). If /// non-empty 'erasures' is provided, it contains the positions of each erasure. If a /// non-zero pointer to a 'position' vector is provided, its capacity will be increased to /// be capable of storing up to 'nroots()' ints; the actual deduced error locations will be /// returned. /// /// RETURN VALUE /// /// Return -1 on error. The encode returns the number of parity symbols produced; /// decode returns the number of symbols corrected. Both errors and erasures are included, /// so long as they are actually different than the deduced value. In other words, if a /// symbol is marked as an erasure but it actually turns out to be correct, it's index will /// NOT be included in the returned count, nor the modified erasure vector! /// virtual int encode(const uint8_t *data, int len, uint8_t *parity) const = 0; virtual int decode1(uint8_t *data, int len, uint8_t *parity, const std::vector &erasure = std::vector(), std::vector *position = 0) const = 0; int decode(uint8_t *data, int len, int pad = 0, // ignore 'pad' symbols at start of array const std::vector &erasure = std::vector(), std::vector *position = 0) const { return decode1((uint8_t*)(data + pad), len, (uint8_t*)(data + len), erasure, position); } }; // // gfpoly - default field polynomial generator functor. // template struct gfpoly { int operator()(int sr) const { if (sr == 0) { sr = 1; } else { sr <<= 1; if (sr & (1 << 8)) sr ^= PLY; sr &= ((1 << 8) - 1); } return sr; } }; // // class reed_solomon_tabs -- R-S tables common to all RS(NN,*) with same SYM, PRM and PLY // template class reed_solomon_tabs : public reed_solomon_base { public: typedef uint8_t symbol_t; static const size_t DATUM = 8; // bits static const size_t SYMBOL = 8; // bits / symbol static const int MM = 8; static const int SIZE = (1 << 8) - 1; // maximum symbols in field static const int NN = SIZE; static const int A0 = SIZE; static const int MODS // modulo table: 1/2 the symbol size squared, up to 4k #if defined(EZPWD_NO_MOD_TAB) = 0; #else = 8 > 8 ? (1 << 12) : (1 << 8 << 8 / 2); #endif static int iprim; // initialized to -1, below protected: static std::array alpha_to; static std::array index_of; static std::array mod_of; virtual ~reed_solomon_tabs() {} reed_solomon_tabs() : reed_solomon_base() { // Do init if not already done. We check one value which is initialized to -1; this is // safe, 'cause the value will not be set 'til the initializing thread has completely // initialized the structure. Worst case scenario: multiple threads will initialize // identically. No mutex necessary. if (iprim >= 0) return; // Generate Galois field lookup tables index_of[0] = A0; // log(zero) = -inf alpha_to[A0] = 0; // alpha**-inf = 0 PLY poly; int sr = poly(0); for (int i = 0; i < NN; i++) { index_of[sr] = i; alpha_to[i] = sr; sr = poly(sr); } // If it's not primitive, raise exception or abort if (sr != alpha_to[0]) { abort(); } // Generate modulo table for some commonly used (non-trivial) values for (int x = NN; x < NN + MODS; ++x) mod_of[x - NN] = _modnn(x); // Find prim-th root of 1, index form, used in decoding. int iptmp = 1; while (iptmp % PRM != 0) iptmp += NN; iprim = iptmp / PRM; } // // modnn -- modulo replacement for galois field arithmetics, optionally w/ table acceleration // // @x: the value to reduce (will never be -'ve) // // where // MM = number of bits per symbol // NN = (2^MM) - 1 // // Simple arithmetic modulo would return a wrong result for values >= 3 * NN // uint8_t _modnn(int x) const { while (x >= NN) { x -= NN; x = (x >> MM) + (x & NN); } return x; } uint8_t modnn(int x) const { while (x >= NN + MODS) { x -= NN; x = (x >> MM) + (x & NN); } if (MODS && x >= NN) x = mod_of[x - NN]; return x; } }; // // class reed_solomon - Reed-Solomon codec // // @TYP: A symbol datum; {en,de}code operates on arrays of these // @DATUM: Bits per datum (a TYP()) // @SYM{BOL}, MM: Bits per symbol // @NN: Symbols per block (== (1< instances with the same template type parameters share a common // (static) set of alpha_to, index_of and genpoly tables. The first instance to be constructed // initializes the tables. // // Each specialized type of reed_solomon implements a specific encode/decode method // appropriate to its datum 'TYP'. When accessed via a generic reed_solomon_base pointer, only // access via "safe" (size specifying) containers or iterators is available. // template class reed_solomon : public reed_solomon_tabs { public: typedef reed_solomon_tabs tabs_t; using tabs_t::A0; using tabs_t::DATUM; using tabs_t::MM; using tabs_t::NN; using tabs_t::SIZE; using tabs_t::SYMBOL; using tabs_t::iprim; using tabs_t::alpha_to; using tabs_t::index_of; using tabs_t::modnn; static const int NROOTS = RTS; static const int LOAD = SIZE - NROOTS; // maximum non-parity symbol payload protected: static std::array genpoly; public: virtual size_t datum() const { return DATUM; } virtual size_t symbol() const { return SYMBOL; } virtual int size() const { return SIZE; } virtual int nroots() const { return NROOTS; } virtual int load() const { return LOAD; } using reed_solomon_base::decode; virtual int decode1(uint8_t *data, int len, uint8_t *parity, const std::vector &erasure = std::vector(), std::vector *position = 0) const { return decode_mask(data, len, parity, erasure, position); } // // decode_mask -- mask INP data into valid SYMBOL data // /// Incoming data may be in a variety of sizes, and may contain information beyond the /// R-S symbol capacity. For example, we might use a 6-bit R-S symbol to correct the lower /// 6 bits of an 8-bit data character. This would allow us to correct common substitution /// errors (such as '2' for '3', 'R' for 'T', 'n' for 'm'). /// int decode_mask(uint8_t *data, int len, uint8_t *parity = 0, // either 0, or pointer to all parity symbols const std::vector &erasure = std::vector(), std::vector *position = 0) const { if (!parity) { len -= NROOTS; parity = data + len; } int corrects; if (!erasure.size() && !position) { // No erasures, and error position info not wanted. corrects = decode(data, len, parity); } else { // Either erasure location info specified, or resultant error position info wanted; // Prepare pos (a temporary, if no position vector provided), and copy any provided // erasure positions. After number of corrections is known, resize the position // vector. Thus, we use any supplied erasure info, and optionally return any // correction position info separately. std::vector _pos; std::vector &pos = position ? *position : _pos; pos.resize(std::max(size_t(NROOTS), erasure.size())); std::copy(erasure.begin(), erasure.end(), pos.begin()); corrects = decode(data, len, parity, &pos.front(), erasure.size()); if (corrects > int(pos.size())) { return -1; } pos.resize(std::max(0, corrects)); } return corrects; } virtual ~reed_solomon() { } reed_solomon() : reed_solomon_tabs() { // We check one element of the array; this is safe, 'cause the value will not be // initialized 'til the initializing thread has completely initialized the array. Worst // case scenario: multiple threads will initialize identically. No mutex necessary. if (genpoly[0]) return; std::array tmppoly; // uninitialized // Form RS code generator polynomial from its roots. Only lower-index entries are // consulted, when computing subsequent entries; only index 0 needs initialization. tmppoly[0] = 1; for (int i = 0, root = FCR * PRM; i < NROOTS; i++, root += PRM) { tmppoly[i + 1] = 1; // Multiply tmppoly[] by @**(root + x) for (int j = i; j > 0; j--) { if (tmppoly[j] != 0) tmppoly[j] = tmppoly[j - 1] ^ alpha_to[modnn(index_of[tmppoly[j]] + root)]; else tmppoly[j] = tmppoly[j - 1]; } // tmppoly[0] can never be zero tmppoly[0] = alpha_to[modnn(index_of[tmppoly[0]] + root)]; } // convert NROOTS entries of tmppoly[] to genpoly[] in index form for quicker encoding, // in reverse order so genpoly[0] is last element initialized. for (int i = NROOTS; i >= 0; --i) genpoly[i] = index_of[tmppoly[i]]; } virtual int encode(const uint8_t *data, int len, uint8_t *parity) // at least nroots const { // Check length parameter for validity for (int i = 0; i < NROOTS; i++) parity[i] = 0; for (int i = 0; i < len; i++) { uint8_t feedback = index_of[data[i] ^ parity[0]]; if (feedback != A0) { for (int j = 1; j < NROOTS; j++) parity[j] ^= alpha_to[modnn(feedback + genpoly[NROOTS - j])]; } std::rotate(parity, parity + 1, parity + NROOTS); if (feedback != A0) parity[NROOTS - 1] = alpha_to[modnn(feedback + genpoly[0])]; else parity[NROOTS - 1] = 0; } return NROOTS; } int decode(uint8_t *data, int len, uint8_t *parity, // Requires: at least NROOTS int *eras_pos = 0, // Capacity: at least NROOTS int no_eras = 0, // Maximum: at most NROOTS uint8_t *corr = 0) // Capacity: at least NROOTS const { typedef std::array typ_nroots; typedef std::array typ_nroots_1; typedef std::array int_nroots; typ_nroots_1 lambda{{0}}; typ_nroots syn; typ_nroots_1 b; typ_nroots_1 t; typ_nroots_1 omega; int_nroots root; typ_nroots_1 reg; int_nroots loc; int count = 0; // Check length parameter and erasures for validity int pad = NN - NROOTS - len; if (no_eras) { if (no_eras > NROOTS) { return -1; } for (int i = 0; i < no_eras; ++i) { if (eras_pos[i] < 0 || eras_pos[i] >= len + NROOTS) { return -1; } } } // form the syndromes; i.e., evaluate data(x) at roots of g(x) for (int i = 0; i < NROOTS; i++) syn[i] = data[0]; for (int j = 1; j < len; j++) { for (int i = 0; i < NROOTS; i++) { if (syn[i] == 0) { syn[i] = data[j]; } else { syn[i] = data[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)]; } } } for (int j = 0; j < NROOTS; j++) { for (int i = 0; i < NROOTS; i++) { if (syn[i] == 0) { syn[i] = parity[j]; } else { syn[i] = parity[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)]; } } } // Convert syndromes to index form, checking for nonzero condition uint8_t syn_error = 0; for (int i = 0; i < NROOTS; i++) { syn_error |= syn[i]; syn[i] = index_of[syn[i]]; } int deg_lambda = 0; int deg_omega = 0; int r = no_eras; int el = no_eras; if (!syn_error) { // if syndrome is zero, data[] is a codeword and there are no errors to correct. count = 0; goto finish; } lambda[0] = 1; if (no_eras > 0) { // Init lambda to be the erasure locator polynomial. Convert erasure positions // from index into data, to index into Reed-Solomon block. lambda[1] = alpha_to[modnn(PRM * (NN - 1 - (eras_pos[0] + pad)))]; for (int i = 1; i < no_eras; i++) { uint8_t u = modnn(PRM * (NN - 1 - (eras_pos[i] + pad))); for (int j = i + 1; j > 0; j--) { uint8_t tmp = index_of[lambda[j - 1]]; if (tmp != A0) { lambda[j] ^= alpha_to[modnn(u + tmp)]; } } } } for (int i = 0; i < NROOTS + 1; i++) b[i] = index_of[lambda[i]]; // // Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial // while (++r <= NROOTS) { // r is the step number // Compute discrepancy at the r-th step in poly-form uint8_t discr_r = 0; for (int i = 0; i < r; i++) { if ((lambda[i] != 0) && (syn[r - i - 1] != A0)) { discr_r ^= alpha_to[modnn(index_of[lambda[i]] + syn[r - i - 1])]; } } discr_r = index_of[discr_r]; // Index form if (discr_r == A0) { // 2 lines below: B(x) <-- x*B(x) // Rotate the last element of b[NROOTS+1] to b[0] std::rotate(b.begin(), b.begin() + NROOTS, b.end()); b[0] = A0; } else { // 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) t[0] = lambda[0]; for (int i = 0; i < NROOTS; i++) { if (b[i] != A0) { t[i + 1] = lambda[i + 1] ^ alpha_to[modnn(discr_r + b[i])]; } else t[i + 1] = lambda[i + 1]; } if (2 * el <= r + no_eras - 1) { el = r + no_eras - el; // 2 lines below: B(x) <-- inv(discr_r) * lambda(x) for (int i = 0; i <= NROOTS; i++) { b[i] = ((lambda[i] == 0) ? A0 : modnn(index_of[lambda[i]] - discr_r + NN)); } } else { // 2 lines below: B(x) <-- x*B(x) std::rotate(b.begin(), b.begin() + NROOTS, b.end()); b[0] = A0; } lambda = t; } } // Convert lambda to index form and compute deg(lambda(x)) for (int i = 0; i < NROOTS + 1; i++) { lambda[i] = index_of[lambda[i]]; if (lambda[i] != NN) deg_lambda = i; } // Find roots of error+erasure locator polynomial by Chien search reg = lambda; count = 0; // Number of roots of lambda(x) for (int i = 1, k = iprim - 1; i <= NN; i++, k = modnn(k + iprim)) { uint8_t q = 1; // lambda[0] is always 0 for (int j = deg_lambda; j > 0; j--) { if (reg[j] != A0) { reg[j] = modnn(reg[j] + j); q ^= alpha_to[reg[j]]; } } if (q != 0) continue; // Not a root // store root (index-form) and error location number root[count] = i; loc[count] = k; // If we've already found max possible roots, abort the search to save time if (++count == deg_lambda) break; } if (deg_lambda != count) { // deg(lambda) unequal to number of roots => uncorrectable error detected count = -1; goto finish; } // // Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo x**NROOTS). in // index form. Also find deg(omega). // deg_omega = deg_lambda - 1; for (int i = 0; i <= deg_omega; i++) { uint8_t tmp = 0; for (int j = i; j >= 0; j--) { if ((syn[i - j] != A0) && (lambda[j] != A0)) tmp ^= alpha_to[modnn(syn[i - j] + lambda[j])]; } omega[i] = index_of[tmp]; } // // Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(fcr-1) // and den = lambda_pr(inv(X(l))) all in poly-form // for (int j = count - 1; j >= 0; j--) { uint8_t num1 = 0; for (int i = deg_omega; i >= 0; i--) { if (omega[i] != A0) num1 ^= alpha_to[modnn(omega[i] + i * root[j])]; } uint8_t num2 = alpha_to[modnn(root[j] * (FCR - 1) + NN)]; uint8_t den = 0; // lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] for (int i = std::min(deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) { if (lambda[i + 1] != A0) { den ^= alpha_to[modnn(lambda[i + 1] + i * root[j])]; } } // Apply error to data. Padding ('pad' unused symbols) begin at index 0. if (num1 != 0) { if (loc[j] < pad) { // If the computed error position is in the 'pad' (the unused portion of the // R-S data capacity), then our solution has failed -- we've computed a // correction location outside of the data and parity we've been provided! count = -1; goto finish; } uint8_t cor = alpha_to[modnn(index_of[num1] + index_of[num2] + NN - index_of[den])]; // Store the error correction pattern, if a correction buffer is available if (corr) corr[j] = cor; // If a data/parity buffer is given and the error is inside the message or // parity data, correct it if (loc[j] < (NN - NROOTS)) { if (data) { data[loc[j] - pad] ^= cor; } } else if (loc[j] < NN) { if (parity) parity[loc[j] - (NN - NROOTS)] ^= cor; } } } finish: if (eras_pos != NULL) { for (int i = 0; i < count; i++) eras_pos[i] = loc[i] - pad; } return count; } }; // // Define the static reed_solomon...<...> members; allowed in header for template types. // // The reed_solomon_tags<...>::iprim < 0 is used to indicate to the first instance that the // static tables require initialization. // template int reed_solomon_tabs::iprim = -1; template std::array::NN + 1> reed_solomon_tabs::alpha_to; template std::array::NN + 1> reed_solomon_tabs::index_of; template std::array::MODS> reed_solomon_tabs::mod_of; template std::array::NROOTS + 1> reed_solomon::genpoly; // // RS( ... ) -- Define a reed-solomon codec // // @SYMBOLS: Total number of symbols; must be a power of 2 minus 1, eg 2^8-1 == 255 // @PAYLOAD: The maximum number of non-parity symbols, eg 253 ==> 2 parity symbols // @POLY: A primitive polynomial appropriate to the SYMBOLS size // @FCR: The first consecutive root of the Reed-Solomon generator polynomial // @PRIM: The primitive root of the generator polynomial // // // RS -- Standard partial specializations for Reed-Solomon codec type access // // Normally, Reed-Solomon codecs are described with terms like RS(255,252). Obtain various // standard Reed-Solomon codecs using macros of a similar form, eg. RS<255, 252>. Standard PLY, // FCR and PRM values are provided for various SYMBOL sizes, along with appropriate basic types // capable of holding all internal Reed-Solomon tabular data. // // In order to provide "default initialization" of const RS<...> types, a user-provided // default constructor must be provided. // template struct RS; template struct RS<255, PAYLOAD> : public ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>> { RS() : ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>>() { } }; } // namespace ReedSolomon #endif // REEDSOLOMON_H