///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017 Edouard Griffiths, F4EXB //
// //
// This program is free software; you can redistribute it and/or modify //
// it under the terms of the GNU General Public License as published by //
// the Free Software Foundation as version 3 of the License, or //
// //
// This program is distributed in the hope that it will be useful, //
// but WITHOUT ANY WARRANTY; without even the implied warranty of //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License V3 for more details. //
// //
// You should have received a copy of the GNU General Public License //
// along with this program. If not, see . //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_CHANALYZERNG_H
#define INCLUDE_CHANALYZERNG_H
#include
#include
#include "dsp/basebandsamplesink.h"
#include "channel/channelsinkapi.h"
#include "dsp/interpolator.h"
#include "dsp/ncof.h"
#include "dsp/fftcorr.h"
#include "dsp/fftfilt.h"
#include "dsp/phaselockcomplex.h"
#include "dsp/freqlockcomplex.h"
#include "audio/audiofifo.h"
#include "util/message.h"
#include "util/movingaverage.h"
#include "chanalyzersettings.h"
#define ssbFftLen 1024
class DeviceSourceAPI;
class ThreadedBasebandSampleSink;
class DownChannelizer;
class ChannelAnalyzer : public BasebandSampleSink, public ChannelSinkAPI {
public:
class MsgConfigureChannelAnalyzer : public Message {
MESSAGE_CLASS_DECLARATION
public:
const ChannelAnalyzerSettings& getSettings() const { return m_settings; }
bool getForce() const { return m_force; }
static MsgConfigureChannelAnalyzer* create(const ChannelAnalyzerSettings& settings, bool force)
{
return new MsgConfigureChannelAnalyzer(settings, force);
}
private:
ChannelAnalyzerSettings m_settings;
bool m_force;
MsgConfigureChannelAnalyzer(const ChannelAnalyzerSettings& settings, bool force) :
Message(),
m_settings(settings),
m_force(force)
{ }
};
class MsgConfigureChannelAnalyzerOld : public Message {
MESSAGE_CLASS_DECLARATION
public:
int getChannelSampleRate() const { return m_channelSampleRate; }
Real getBandwidth() const { return m_Bandwidth; }
Real getLoCutoff() const { return m_LowCutoff; }
int getSpanLog2() const { return m_spanLog2; }
bool getSSB() const { return m_ssb; }
bool getPLL() const { return m_pll; }
bool getFLL() const { return m_fll; }
unsigned int getPLLPSKOrder() const { return m_pllPskOrder; }
static MsgConfigureChannelAnalyzerOld* create(
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
bool fll,
unsigned int pllPskOrder)
{
return new MsgConfigureChannelAnalyzerOld(
channelSampleRate,
Bandwidth,
LowCutoff,
spanLog2,
ssb,
pll,
fll,
pllPskOrder);
}
private:
int m_channelSampleRate;
Real m_Bandwidth;
Real m_LowCutoff;
int m_spanLog2;
bool m_ssb;
bool m_pll;
bool m_fll;
unsigned int m_pllPskOrder;
MsgConfigureChannelAnalyzerOld(
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
bool fll,
unsigned int pllPskOrder) :
Message(),
m_channelSampleRate(channelSampleRate),
m_Bandwidth(Bandwidth),
m_LowCutoff(LowCutoff),
m_spanLog2(spanLog2),
m_ssb(ssb),
m_pll(pll),
m_fll(fll),
m_pllPskOrder(pllPskOrder)
{ }
};
class MsgConfigureChannelizer : public Message {
MESSAGE_CLASS_DECLARATION
public:
int getSampleRate() const { return m_sampleRate; }
int getCenterFrequency() const { return m_centerFrequency; }
static MsgConfigureChannelizer* create(int sampleRate, int centerFrequency)
{
return new MsgConfigureChannelizer(sampleRate, centerFrequency);
}
private:
int m_sampleRate;
int m_centerFrequency;
MsgConfigureChannelizer(int sampleRate, int centerFrequency) :
Message(),
m_sampleRate(sampleRate),
m_centerFrequency(centerFrequency)
{ }
};
class MsgReportChannelSampleRateChanged : public Message {
MESSAGE_CLASS_DECLARATION
public:
static MsgReportChannelSampleRateChanged* create()
{
return new MsgReportChannelSampleRateChanged();
}
private:
MsgReportChannelSampleRateChanged() :
Message()
{ }
};
ChannelAnalyzer(DeviceSourceAPI *deviceAPI);
virtual ~ChannelAnalyzer();
virtual void destroy() { delete this; }
void setSampleSink(BasebandSampleSink* sampleSink) { m_sampleSink = sampleSink; }
void configure(MessageQueue* messageQueue,
int channelSampleRate,
Real Bandwidth,
Real LowCutoff,
int spanLog2,
bool ssb,
bool pll,
bool fll,
unsigned int pllPskOrder);
DownChannelizer *getChannelizer() { return m_channelizer; }
int getInputSampleRate() const { return m_inputSampleRate; }
int getChannelSampleRate() const { return m_settings.m_downSample ? m_settings.m_downSampleRate : m_inputSampleRate; }
double getMagSq() const { return m_magsq; }
double getMagSqAvg() const { return (double) m_channelPowerAvg; }
bool isPllLocked() const { return m_settings.m_pll && m_pll.locked(); }
Real getPllFrequency() const { return m_pll.getFreq(); }
Real getPllDeltaPhase() const { return m_pll.getDeltaPhi(); }
Real getPllPhase() const { return m_pll.getPhiHat(); }
virtual void feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly);
virtual void start();
virtual void stop();
virtual bool handleMessage(const Message& cmd);
virtual void getIdentifier(QString& id) { id = objectName(); }
virtual void getTitle(QString& title) { title = objectName(); }
virtual qint64 getCenterFrequency() const { return m_settings.m_frequency; }
virtual QByteArray serialize() const { return QByteArray(); }
virtual bool deserialize(const QByteArray& data) { (void) data; return false; }
static const QString m_channelIdURI;
static const QString m_channelId;
private:
DeviceSourceAPI *m_deviceAPI;
ThreadedBasebandSampleSink* m_threadedChannelizer;
DownChannelizer* m_channelizer;
ChannelAnalyzerSettings m_settings;
int m_inputSampleRate;
int m_inputFrequencyOffset;
int m_undersampleCount;
fftfilt::cmplx m_sum;
bool m_usb;
double m_magsq;
bool m_useInterpolator;
NCOF m_nco;
PhaseLockComplex m_pll;
FreqLockComplex m_fll;
Interpolator m_interpolator;
Real m_interpolatorDistance;
Real m_interpolatorDistanceRemain;
fftfilt* SSBFilter;
fftfilt* DSBFilter;
fftfilt* RRCFilter;
fftcorr* m_corr;
BasebandSampleSink* m_sampleSink;
SampleVector m_sampleBuffer;
MovingAverageUtil m_channelPowerAvg;
QMutex m_settingsMutex;
// void apply(bool force = false);
void applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force = false);
void applySettings(const ChannelAnalyzerSettings& settings, bool force = false);
void setFilters(int sampleRate, float bandwidth, float lowCutoff);
void processOneSample(Complex& c, fftfilt::cmplx *sideband);
inline void feedOneSample(const fftfilt::cmplx& s, const fftfilt::cmplx& pll)
{
switch (m_settings.m_inputType)
{
case ChannelAnalyzerSettings::InputPLL:
{
if (m_settings.m_ssb & !m_usb) { // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(pll.imag()*SDR_RX_SCALEF, pll.real()*SDR_RX_SCALEF));
} else {
m_sampleBuffer.push_back(Sample(pll.real()*SDR_RX_SCALEF, pll.imag()*SDR_RX_SCALEF));
}
}
break;
case ChannelAnalyzerSettings::InputAutoCorr:
{
std::complex a = m_corr->run(s/(SDR_RX_SCALEF/768.0f), 0);
if (m_settings.m_ssb & !m_usb) { // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(a.imag(), a.real()));
} else {
m_sampleBuffer.push_back(Sample(a.real(), a.imag()));
}
}
break;
case ChannelAnalyzerSettings::InputSignal:
default:
{
if (m_settings.m_ssb & !m_usb) { // invert spectrum for LSB
m_sampleBuffer.push_back(Sample(s.imag(), s.real()));
} else {
m_sampleBuffer.push_back(Sample(s.real(), s.imag()));
}
}
break;
}
}
};
#endif // INCLUDE_CHANALYZERNG_H