/* firmin.c This file is part of a program that implements a Software-Defined Radio. Copyright (C) 2016 Warren Pratt, NR0V Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. The author can be reached by email at warren@wpratt.com */ #include "comm.hpp" #include "fir.hpp" #include "fircore.hpp" namespace WDSP { /******************************************************************************************************** * * * Partitioned Overlap-Save Filter Kernel * * * ********************************************************************************************************/ void FIRCORE::plan_fircore (FIRCORE *a) { // must call for change in 'nc', 'size', 'out' int i; a->nfor = a->nc / a->size; a->cset = 0; a->buffidx = 0; a->idxmask = a->nfor - 1; a->fftin = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fftout = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->fmask = new float**[2]; // (float ***) malloc0 (2 * sizeof (float **)); a->fmask[0] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->fmask[1] = new float*[a->nfor]; // (float **) malloc0 (a->nfor * sizeof (float *)); a->maskgen = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->pcfor = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); a->maskplan = new fftwf_plan*[2]; // (fftwf_plan **) malloc0 (2 * sizeof (fftwf_plan *)); a->maskplan[0] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); a->maskplan[1] = new fftwf_plan[a->nfor]; // (fftwf_plan *) malloc0 (a->nfor * sizeof (fftwf_plan)); for (i = 0; i < a->nfor; i++) { a->fftout[i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fmask[0][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->fmask[1][i] = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->pcfor[i] = fftwf_plan_dft_1d( 2 * a->size, (fftwf_complex *)a->fftin, (fftwf_complex *)a->fftout[i], FFTW_FORWARD, FFTW_PATIENT ); a->maskplan[0][i] = fftwf_plan_dft_1d( 2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[0][i], FFTW_FORWARD, FFTW_PATIENT ); a->maskplan[1][i] = fftwf_plan_dft_1d(2 * a->size, (fftwf_complex *)a->maskgen, (fftwf_complex *)a->fmask[1][i], FFTW_FORWARD, FFTW_PATIENT); } a->accum = new float[2 * a->size * 2]; // (float *) malloc0 (2 * a->size * sizeof (complex)); a->crev = fftwf_plan_dft_1d( 2 * a->size, (fftwf_complex *)a->accum, (fftwf_complex *)a->out, FFTW_BACKWARD, FFTW_PATIENT ); a->masks_ready = 0; } void FIRCORE::calc_fircore (FIRCORE *a, int flip) { // call for change in frequency, rate, wintype, gain // must also call after a call to plan_firopt() int i; if (a->mp) FIR::mp_imp (a->nc, a->impulse, a->imp, 16, 0); else std::copy(a->impulse, a->impulse + a->nc * 2, a->imp); for (i = 0; i < a->nfor; i++) { // I right-justified the impulse response => take output from left side of output buff, discard right side // Be careful about flipping an asymmetrical impulse response. std::copy(&(a->imp[2 * a->size * i]), &(a->imp[2 * a->size * i]) + a->size * 2, &(a->maskgen[2 * a->size])); fftwf_execute (a->maskplan[1 - a->cset][i]); } a->masks_ready = 1; if (flip) { a->cset = 1 - a->cset; a->masks_ready = 0; } } FIRCORE* FIRCORE::create_fircore (int size, float* in, float* out, int nc, int mp, float* impulse) { FIRCORE *a = new FIRCORE; a->size = size; a->in = in; a->out = out; a->nc = nc; a->mp = mp; // InitializeCriticalSectionAndSpinCount (&a->update, 2500); plan_fircore (a); a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); std::copy(impulse, impulse + a->nc * 2, a->impulse); calc_fircore (a, 1); return a; } void FIRCORE::deplan_fircore (FIRCORE *a) { int i; fftwf_destroy_plan (a->crev); delete[] (a->accum); for (i = 0; i < a->nfor; i++) { delete[] (a->fftout[i]); delete[] (a->fmask[0][i]); delete[] (a->fmask[1][i]); fftwf_destroy_plan (a->pcfor[i]); fftwf_destroy_plan (a->maskplan[0][i]); fftwf_destroy_plan (a->maskplan[1][i]); } delete[] (a->maskplan[0]); delete[] (a->maskplan[1]); delete[] (a->maskplan); delete[] (a->pcfor); delete[] (a->maskgen); delete[] (a->fmask[0]); delete[] (a->fmask[1]); delete[] (a->fmask); delete[] (a->fftout); delete[] (a->fftin); } void FIRCORE::destroy_fircore (FIRCORE *a) { deplan_fircore (a); delete[] (a->imp); delete[] (a->impulse); delete (a); } void FIRCORE::flush_fircore (FIRCORE *a) { int i; std::fill(a->fftin, a->fftin + 2 * a->size * 2, 0); for (i = 0; i < a->nfor; i++) std::fill(a->fftout[i], a->fftout[i] + 2 * a->size * 2, 0); a->buffidx = 0; } void FIRCORE::xfircore (FIRCORE *a) { int i, j, k; std::copy(a->in, a->in + a->size * 2, &(a->fftin[2 * a->size])); fftwf_execute (a->pcfor[a->buffidx]); k = a->buffidx; std::fill(a->accum, a->accum + 2 * a->size * 2, 0); for (j = 0; j < a->nfor; j++) { for (i = 0; i < 2 * a->size; i++) { a->accum[2 * i + 0] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 0] - a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 1]; a->accum[2 * i + 1] += a->fftout[k][2 * i + 0] * a->fmask[a->cset][j][2 * i + 1] + a->fftout[k][2 * i + 1] * a->fmask[a->cset][j][2 * i + 0]; } k = (k + a->idxmask) & a->idxmask; } a->buffidx = (a->buffidx + 1) & a->idxmask; fftwf_execute (a->crev); std::copy(&(a->fftin[2 * a->size]), &(a->fftin[2 * a->size]) + a->size * 2, a->fftin); } void FIRCORE::setBuffers_fircore (FIRCORE *a, float* in, float* out) { a->in = in; a->out = out; deplan_fircore (a); plan_fircore (a); calc_fircore (a, 1); } void FIRCORE::setSize_fircore (FIRCORE *a, int size) { a->size = size; deplan_fircore (a); plan_fircore (a); calc_fircore (a, 1); } void FIRCORE::setImpulse_fircore (FIRCORE *a, float* impulse, int update) { std::copy(impulse, impulse + a->nc * 2, a->impulse); calc_fircore (a, update); } void FIRCORE::setNc_fircore (FIRCORE *a, int nc, float* impulse) { // because of FFT planning, this will probably cause a glitch in audio if done during dataflow deplan_fircore (a); delete[] (a->impulse); delete[] (a->imp); a->nc = nc; plan_fircore (a); a->imp = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); a->impulse = new float[a->nc * 2]; // (float *) malloc0 (a->nc * sizeof (complex)); std::copy(impulse, impulse + a->nc * 2, a->impulse); calc_fircore (a, 1); } void FIRCORE::setMp_fircore (FIRCORE *a, int mp) { a->mp = mp; calc_fircore (a, 1); } void FIRCORE::setUpdate_fircore (FIRCORE *a) { if (a->masks_ready) { a->cset = 1 - a->cset; a->masks_ready = 0; } } } // namespace WDSP