/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include "audiofilter.h" // f(-3dB) = 3.6 kHz @ 48000 Hz SR (w = 0.0375): const float AudioFilter::m_lpa[3] = {1.0, 1.392667E+00, -5.474446E-01}; const float AudioFilter::m_lpb[3] = {3.869430E-02, 7.738860E-02, 3.869430E-02}; // f(-3dB) = 300 Hz @ 8000 Hz SR (w = 0.0375): const float AudioFilter::m_hpa[3] = {1.000000e+00, 1.667871e+00, -7.156964e-01}; const float AudioFilter::m_hpb[3] = {8.459039e-01, -1.691760e+00, 8.459039e-01}; AudioFilter::AudioFilter() : m_filterLP(m_lpa, m_lpb), m_filterHP(m_hpa, m_hpb), m_useHP(false) {} AudioFilter::~AudioFilter() {} void AudioFilter::setDecimFilters(int srHigh, int srLow, float fcHigh, float fcLow, float fgain) { double fcNormHigh = fcHigh / srHigh; double fcNormLow = fcLow / srLow; calculate2(false, fcNormHigh, m_lpva, m_lpvb, fgain); calculate2(true, fcNormLow, m_hpva, m_hpvb, fgain); m_filterLP.setCoeffs(m_lpva, m_lpvb); m_filterHP.setCoeffs(m_hpva, m_hpvb); } void AudioFilter::calculate2(bool highPass, double fc, float *va, float *vb, float fgain) { double a[22], b[22]; cheby(highPass, fc, 0.5, 2, a, b, fgain); // low-pass, 0.5% ripple, 2 pole filter // Copy to the 2-pole filter coefficients for (int i=0; i<3; i++) { vb[i] = a[i]; va[i] = b[i]; } va[0] = 1.0; qDebug() << "AudioFilter::calculate2:" << " highPass: " << highPass << " fc: " << fc << " a0: " << va[0] << " a1: " << va[1] << " a2: " << va[2] << " b0: " << vb[0] << " b1: " << vb[1] << " b2: " << vb[2]; } /* * Adapted from BASIC program in table 20-4 of * https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch20.pdf */ void AudioFilter::cheby(bool highPass, double fc, float pr, int np, double *a, double *b, float fgain) { double a0, a1, a2, b1, b2; double ta[22], tb[22]; std::fill(a, a+22, 0.0); std::fill(b, b+22, 0.0); a[2] = 1.0; b[2] = 1.0; for (int p = 1; p <= np/2; p++) { cheby_sub(highPass, fc, pr, np, p, a0, a1, a2, b1, b2); // Add coefficients to the cascade for (int i=0; i<22; i++) { ta[i] = a[i]; tb[i] = b[i]; } for (int i=2; i<22; i++) { a[i] = a0*ta[i] + a1*ta[i-1] + a2*ta[i-2]; b[i] = tb[i] - b1*tb[i-1] - b2*tb[i-2]; } } // Finish combining coefficients b[2] = 0; for (int i=0; i<20; i++) { a[i] = a[i+2]; b[i] = -b[i+2]; } // Normalize the gain double sa = 0.0; double sb = 0.0; for (int i=0; i<20; i++) { if (highPass) { sa += i%2 == 0 ? a[i] : -a[i]; sb += i%2 == 0 ? b[i] : -b[i]; } else { sa += a[i]; sb += b[i]; } } double gain = sa/(1.0 -sb); gain /= fgain; for (int i=0; i<20; i++) { a[i] /= gain; } } /* * Adapted from BASIC subroutine in table 20-5 of * https://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch20.pdf */ void AudioFilter::cheby_sub(bool highPass, double fc, float pr, int np, int stage, double& a0, double& a1, double& a2, double& b1, double& b2) { double rp = -cos((M_PI/(np*2)) + (stage-1)*(M_PI/np)); double ip = sin((M_PI/(np*2)) + (stage-1)*(M_PI/np)); // Warp from a circle to an ellipse double esx = 100.0 / (100.0 - pr); double es = sqrt(esx*esx -1.0); double vx = (1.0/np) * log((1.0/es) + sqrt((1.0/(es*es)) + 1.0)); double kx = (1.0/np) * log((1.0/es) + sqrt((1.0/(es*es)) - 1.0)); kx = (exp(kx) + exp(-kx))/2.0; rp = rp * ((exp(vx) - exp(-vx))/2.0) / kx; ip = ip * ((exp(vx) + exp(-vx))/2.0) / kx; double t = 2.0 * tan(0.5); double w = 2.0 * M_PI * fc; double m = rp*rp + ip*ip; double d = 4.0 - 4.0*rp*t + m*t*t; double x0 = (t*t)/d; double x1 = (2.0*t*t)/d; double x2 = (t*t)/d; double y1 = (8.0 - 2.0*m*t*t)/d; double y2 = (-4.0 - 4.0*rp*t - m*t*t)/d; double k; if (highPass) { k = -cos(w/2.0 + 0.5) / cos(w/2.0 - 0.5); } else { k = sin(0.5 - w/2.0) / sin(0.5 + w/2.0); } d = 1.0 + y1*k - y2*k*k; a0 = (x0 - x1*k + x2*k*k)/d; a1 = (-2.0*x0*k + x1 + x1*k*k - 2.0*x2*k)/d; a2 = (x0*k*k - x1*k + x2)/d; b1 = (2.0*k + y1 + y1*k*k - 2.0*y2*k)/d; b2 = (-(k*k) - y1*k + y2)/d; if (highPass) { a1 = -a1; b1 = -b1; } } float AudioFilter::run(const float& sample) { return m_useHP ? m_filterLP.run(m_filterHP.run(sample)) : m_filterLP.run(sample); } float AudioFilter::runHP(const float& sample) { return m_filterHP.run(sample); } float AudioFilter::runLP(const float& sample) { return m_filterLP.run(sample); }