/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2021-2022 Edouard Griffiths, F4EXB // // Copyright (C) 2021-2022 Jon Beniston, M7RCE // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "dsp/dspengine.h" #include "dsp/datafifo.h" #include "dsp/scopevis.h" #include "device/deviceapi.h" #include "util/db.h" #include "util/stepfunctions.h" #include "channel/channelwebapiutils.h" #include "util/reedsolomon.h" #include "maincore.h" #include "radiosondedemod.h" #include "radiosondedemodsink.h" const uint8_t RadiosondeDemodSink::m_descramble[64] = { 0x96, 0x83, 0x3E, 0x51, 0xB1, 0x49, 0x08, 0x98, 0x32, 0x05, 0x59, 0x0E, 0xF9, 0x44, 0xC6, 0x26, 0x21, 0x60, 0xC2, 0xEA, 0x79, 0x5D, 0x6D, 0xA1, 0x54, 0x69, 0x47, 0x0C, 0xDC, 0xE8, 0x5C, 0xF1, 0xF7, 0x76, 0x82, 0x7F, 0x07, 0x99, 0xA2, 0x2C, 0x93, 0x7C, 0x30, 0x63, 0xF5, 0x10, 0x2E, 0x61, 0xD0, 0xBC, 0xB4, 0xB6, 0x06, 0xAA, 0xF4, 0x23, 0x78, 0x6E, 0x3B, 0xAE, 0xBF, 0x7B, 0x4C, 0xC1 }; RadiosondeDemodSink::RadiosondeDemodSink(RadiosondeDemod *radiosondeDemod) : m_scopeSink(nullptr), m_radiosondeDemod(radiosondeDemod), m_channelSampleRate(RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE), m_channelFrequencyOffset(0), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_messageQueueToChannel(nullptr), m_rxBuf(nullptr), m_train(nullptr), m_sampleBufferIndex(0) { m_magsq = 0.0; m_demodBuffer.resize(1<<12); m_demodBufferFill = 0; m_sampleBuffer.resize(m_sampleBufferSize); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } RadiosondeDemodSink::~RadiosondeDemodSink() { delete[] m_rxBuf; delete[] m_train; } void RadiosondeDemodSink::sampleToScope(Complex sample) { if (m_scopeSink) { Real r = std::real(sample) * SDR_RX_SCALEF; Real i = std::imag(sample) * SDR_RX_SCALEF; m_sampleBuffer[m_sampleBufferIndex++] = Sample(r, i); if (m_sampleBufferIndex == m_sampleBufferSize) { std::vector vbegin; vbegin.push_back(m_sampleBuffer.begin()); m_scopeSink->feed(vbegin, m_sampleBufferSize); m_sampleBufferIndex = 0; } } } void RadiosondeDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void RadiosondeDemodSink::processOneSample(Complex &ci) { // FM demodulation double magsqRaw; Real deviation; Real fmDemod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation); // Calculate average and peak levels for level meter Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED); m_movingAverage(magsq); m_magsq = m_movingAverage.asDouble(); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; // Gaussian filter Real filt = m_pulseShape.filter(fmDemod); // An input frequency offset corresponds to a DC offset after FM demodulation // What frequency offset is RS41 specified too? // We need to remove this, otherwise it may effect the sampling // To calculate what it is, we sum the training sequence, which should be zero // Clip, as large noise can result in high correlation // Don't clip to 1.0 - as there may be some DC offset (1k/4.8k max dev=0.2) Real filtClipped; filtClipped = std::fmax(-1.4, std::fmin(1.4, filt)); // Buffer filtered samples. We buffer enough samples for a max length message // before trying to demod, so false triggering can't make us miss anything m_rxBuf[m_rxBufIdx] = filtClipped; m_rxBufIdx = (m_rxBufIdx + 1) % m_rxBufLength; m_rxBufCnt = std::min(m_rxBufCnt + 1, m_rxBufLength); Real corr = 0.0f; bool scopeCRCValid = false; bool scopeCRCInvalid = false; Real dcOffset = 0.0f; bool thresholdMet = false; bool gotSOP = false; if ((m_rxBufCnt >= m_rxBufLength)) { // Correlate with training sequence corr = correlate(m_rxBufIdx); // If we meet threshold, try to demod // Take abs value, to account for both initial phases thresholdMet = fabs(corr) >= m_settings.m_correlationThreshold; if (thresholdMet) { // Try to see if starting at a later sample improves correlation int maxCorrOffset = 0; Real maxCorr; do { maxCorr = fabs(corr); maxCorrOffset++; corr = correlate(m_rxBufIdx + maxCorrOffset); } while (fabs(corr) > maxCorr); maxCorrOffset--; // Calculate mean of preamble as DC offset (as it should be 0 on an ideal signal) Real trainingSum = 0.0f; for (int i = 0; i < m_correlationLength; i++) { int j = (m_rxBufIdx + maxCorrOffset + i) % m_rxBufLength; trainingSum += m_rxBuf[j]; } dcOffset = trainingSum/m_correlationLength; // Start demod after (most of) preamble int x = (m_rxBufIdx + maxCorrOffset + m_correlationLength*3/4 + 0) % m_rxBufLength; // Attempt to demodulate uint64_t bits = 0; int bitCount = 0; int byteCount = 0; QList sampleIdxs; for (int sampleIdx = 0; sampleIdx < m_rxBufLength; sampleIdx += m_samplesPerSymbol) { // Sum and slice // Summing 3 samples seems to give a very small improvement vs just using 1 int sampleCnt = 3; int sampleOffset = -1; Real sampleSum = 0.0f; for (int i = 0; i < sampleCnt; i++) { sampleSum += m_rxBuf[(x + sampleOffset + i) % m_rxBufLength] - dcOffset; sampleIdxs.append((x + sampleOffset + i) % m_rxBufLength); } int symbol = sampleSum >= 0.0f ? 1 : 0; // Move to next symbol x = (x + m_samplesPerSymbol) % m_rxBufLength; // Symbols map directly to bits int bit = symbol; // Store in shift reg (little endian) bits |= ((uint64_t)bit) << bitCount; bitCount++; if (gotSOP) { if (bitCount == 8) { // Got a complete byte m_bytes[byteCount] = bits; byteCount++; bits = 0; bitCount = 0; if (byteCount >= RS41_LENGTH_STD) { // Get expected length of frame uint8_t frameType = m_bytes[RS41_OFFSET_FRAME_TYPE] ^ m_descramble[RS41_OFFSET_FRAME_TYPE]; int length = RS41Frame::getFrameLength(frameType); // Have we received a complete frame? if (byteCount == length) { bool ok = processFrame(length, corr, sampleIdx); scopeCRCValid = ok; scopeCRCInvalid = !ok; break; } } } } else if (bits == 0xf812962211cab610ULL) // Scrambled header { // Start of packet gotSOP = true; bits = 0; bitCount = 0; m_bytes[0] = 0x10; m_bytes[1] = 0xb6; m_bytes[2] = 0xca; m_bytes[3] = 0x11; m_bytes[4] = 0x22; m_bytes[5] = 0x96; m_bytes[6] = 0x12; m_bytes[7] = 0xf8; byteCount = 8; } else { if (bitCount == 64) { bits >>= 1; bitCount--; } if (sampleIdx >= 16 * 8 * m_samplesPerSymbol) { // Too many bits without receving header break; } } } // printf("\n"); } } // Select signals to feed to scope Complex scopeSample; switch (m_settings.m_scopeCh1) { case 0: scopeSample.real(ci.real() / SDR_RX_SCALEF); break; case 1: scopeSample.real(ci.imag() / SDR_RX_SCALEF); break; case 2: scopeSample.real(magsq); break; case 3: scopeSample.real(fmDemod); break; case 4: scopeSample.real(filt); break; case 5: scopeSample.real(m_rxBuf[m_rxBufIdx]); break; case 6: scopeSample.real(corr / 100.0); break; case 7: scopeSample.real(thresholdMet); break; case 8: scopeSample.real(gotSOP); break; case 9: scopeSample.real(dcOffset); break; case 10: scopeSample.real(scopeCRCValid ? 1.0 : (scopeCRCInvalid ? -1.0 : 0)); break; } switch (m_settings.m_scopeCh2) { case 0: scopeSample.imag(ci.real() / SDR_RX_SCALEF); break; case 1: scopeSample.imag(ci.imag() / SDR_RX_SCALEF); break; case 2: scopeSample.imag(magsq); break; case 3: scopeSample.imag(fmDemod); break; case 4: scopeSample.imag(filt); break; case 5: scopeSample.imag(m_rxBuf[m_rxBufIdx]); break; case 6: scopeSample.imag(corr / 100.0); break; case 7: scopeSample.imag(thresholdMet); break; case 8: scopeSample.imag(gotSOP); break; case 9: scopeSample.imag(dcOffset); break; case 10: scopeSample.imag(scopeCRCValid ? 1.0 : (scopeCRCInvalid ? -1.0 : 0)); break; } sampleToScope(scopeSample); // Send demod signal to Demod Analzyer feature m_demodBuffer[m_demodBufferFill++] = fmDemod * std::numeric_limits::max(); if (m_demodBufferFill >= m_demodBuffer.size()) { QList dataPipes; MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes); if (dataPipes.size() > 0) { QList::iterator it = dataPipes.begin(); for (; it != dataPipes.end(); ++it) { DataFifo *fifo = qobject_cast((*it)->m_element); if (fifo) { fifo->write((quint8*) &m_demodBuffer[0], m_demodBuffer.size() * sizeof(qint16), DataFifo::DataTypeI16); } } } m_demodBufferFill = 0; } } // Correlate received signal with training sequence // Note that DC offset doesn't matter for this Real RadiosondeDemodSink::correlate(int idx) const { Real corr = 0.0f; for (int i = 0; i < m_correlationLength; i++) { int j = (idx + i) % m_rxBufLength; corr += m_train[i] * m_rxBuf[j]; } return corr; } bool RadiosondeDemodSink::processFrame(int length, float corr, int sampleIdx) { // Descramble for (int i = 0; i < length; i++) { m_bytes[i] = m_bytes[i] ^ m_descramble[i & 0x3f]; } // Reed-Solomon Error Correction int errorsCorrected = reedSolomonErrorCorrection(); if (errorsCorrected >= 0) { // Check per-block CRCs are correct if (checkCRCs(length)) { if (getMessageQueueToChannel()) { QDateTime dateTime = QDateTime::currentDateTime(); if (m_settings.m_useFileTime) { QString hardwareId = m_radiosondeDemod->getDeviceAPI()->getHardwareId(); if ((hardwareId == "FileInput") || (hardwareId == "SigMFFileInput")) { QString dateTimeStr; int deviceIdx = m_radiosondeDemod->getDeviceSetIndex(); if (ChannelWebAPIUtils::getDeviceReportValue(deviceIdx, "absoluteTime", dateTimeStr)) { dateTime = QDateTime::fromString(dateTimeStr, Qt::ISODateWithMs); } } } QByteArray rxPacket((char *)m_bytes, length); RadiosondeDemod::MsgMessage *msg = RadiosondeDemod::MsgMessage::create(rxPacket, dateTime, errorsCorrected, corr); getMessageQueueToChannel()->push(msg); } // Skip over received packet, so we don't try to re-demodulate it m_rxBufCnt -= sampleIdx; return true; } } return false; } // Reed Solomon error correction // Returns number of errors corrected, or -1 if there are uncorrectable errors int RadiosondeDemodSink::reedSolomonErrorCorrection() { ReedSolomon::RS rs; int errorsCorrected = 0; for (int i = 0; (i < RS41_RS_INTERLEAVE) && (errorsCorrected >= 0); i++) { // Deinterleave and reverse order uint8_t rsData[RS41_RS_N]; memset(rsData, 0, RS41_RS_PAD); for (int j = 0; j < RS41_RS_DATA; j++) { rsData[RS41_RS_K-1-j] = m_bytes[RS41_OFFSET_FRAME_TYPE+j*RS41_RS_INTERLEAVE+i]; } for (int j = 0; j < RS41_RS_2T; j++) { rsData[RS41_RS_N-1-j] = m_bytes[RS41_OFFSET_RS+i*RS41_RS_2T+j]; } // Detect and correct errors int errors = rs.decode(&rsData[0], RS41_RS_K); // FIXME: Indicate 0 padding? if (errors >= 0) { errorsCorrected += errors; } else { // Uncorrectable errors return -1; } // Restore corrected data for (int j = 0; j < RS41_RS_DATA; j++) { m_bytes[RS41_OFFSET_FRAME_TYPE+j*RS41_RS_INTERLEAVE+i] = rsData[RS41_RS_K-1-j]; } } return errorsCorrected; } // Check per-block CRCs // We could pass partial frames that have some correct CRCs, but for now, whole frame has to be correct bool RadiosondeDemodSink::checkCRCs(int length) { for (int i = RS41_OFFSET_BLOCK_0; i < length; ) { uint8_t blockLength = m_bytes[i+1]; uint16_t rxCrc = m_bytes[i+2+blockLength] | (m_bytes[i+2+blockLength+1] << 8); // CRC doesn't include ID/len - so these can be wrong m_crc.init(); m_crc.calculate(&m_bytes[i+2], blockLength); uint16_t calcCrc = m_crc.get(); if (calcCrc != rxCrc) { return false; } i += blockLength+4; } return true; } void RadiosondeDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "RadiosondeDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((m_channelFrequencyOffset != channelFrequencyOffset) || (m_channelSampleRate != channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((m_channelSampleRate != channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2); m_interpolatorDistance = (Real) channelSampleRate / (Real) RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; m_samplesPerSymbol = RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE / m_settings.m_baud; qDebug() << "RadiosondeDemodSink::applyChannelSettings: m_samplesPerSymbol: " << m_samplesPerSymbol; } void RadiosondeDemodSink::applySettings(const RadiosondeDemodSettings& settings, bool force) { qDebug() << "RadiosondeDemodSink::applySettings:" << " force: " << force; if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2); m_interpolatorDistance = (Real) m_channelSampleRate / (Real) RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE; m_interpolatorDistanceRemain = m_interpolatorDistance; m_lowpass.create(301, RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE, settings.m_rfBandwidth / 2.0f); } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling(RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE / (2.0f * settings.m_fmDeviation)); } if ((settings.m_baud != m_settings.m_baud) || force) { m_samplesPerSymbol = RadiosondeDemodSettings::RADIOSONDEDEMOD_CHANNEL_SAMPLE_RATE / settings.m_baud; qDebug() << "RadiosondeDemodSink::applySettings: m_samplesPerSymbol: " << m_samplesPerSymbol << " baud " << settings.m_baud; // What value to use for BT? RFIC is Si4032 - its datasheet only appears to support 0.5 m_pulseShape.create(0.5, 3, m_samplesPerSymbol); // Recieve buffer, long enough for one max length message delete[] m_rxBuf; m_rxBufLength = RADIOSONDEDEMOD_MAX_BYTES*8*m_samplesPerSymbol; m_rxBuf = new Real[m_rxBufLength]; m_rxBufIdx = 0; m_rxBufCnt = 0; // Create training sequence for correlation delete[] m_train; const int correlateBits = 200; // Preamble is 320bits - leave some for AGC (and clock recovery eventually) m_correlationLength = correlateBits*m_samplesPerSymbol; // Don't want to use header, as we want to calculate DC offset m_train = new Real[m_correlationLength](); // Pulse shape filter takes a few symbols before outputting expected shape for (int j = 0; j < m_samplesPerSymbol; j++) { m_pulseShape.filter(-1.0f); } for (int j = 0; j < m_samplesPerSymbol; j++) { m_pulseShape.filter(1.0f); } for (int i = 0; i < correlateBits; i++) { for (int j = 0; j < m_samplesPerSymbol; j++) { m_train[i*m_samplesPerSymbol+j] = -m_pulseShape.filter((i&1) * 2.0f - 1.0f); } } } m_settings = settings; }