/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2016 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include "dsp/inthalfbandfilter.h" #include "dsp/dspcommands.h" #include #include MESSAGE_CLASS_DEFINITION(DownChannelizer::MsgChannelizerNotification, Message) DownChannelizer::DownChannelizer(BasebandSampleSink* sampleSink) : m_sampleSink(sampleSink), m_inputSampleRate(0), m_requestedOutputSampleRate(0), m_requestedCenterFrequency(0), m_currentOutputSampleRate(0), m_currentCenterFrequency(0) { QString name = "DownChannelizer(" + m_sampleSink->objectName() + ")"; setObjectName(name); } DownChannelizer::~DownChannelizer() { freeFilterChain(); } void DownChannelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency) { Message* cmd = new DSPConfigureChannelizer(sampleRate, centerFrequency); messageQueue->push(cmd); } void DownChannelizer::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool positiveOnly) { if(m_sampleSink == 0) { m_sampleBuffer.clear(); return; } if (m_filterStages.size() == 0) // optimization when no downsampling is done anyway { m_sampleSink->feed(begin, end, positiveOnly); } else { m_mutex.lock(); for(SampleVector::const_iterator sample = begin; sample != end; ++sample) { Sample s(*sample); FilterStages::iterator stage = m_filterStages.begin(); for (; stage != m_filterStages.end(); ++stage) { if(!(*stage)->work(&s)) { break; } } if(stage == m_filterStages.end()) { s.m_real /= (1<<(m_filterStages.size())); s.m_imag /= (1<<(m_filterStages.size())); m_sampleBuffer.push_back(s); } } m_mutex.unlock(); m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), positiveOnly); m_sampleBuffer.clear(); } } void DownChannelizer::start() { if (m_sampleSink != 0) { qDebug() << "DownChannelizer::start: thread: " << thread() << " m_inputSampleRate: " << m_inputSampleRate << " m_requestedOutputSampleRate: " << m_requestedOutputSampleRate << " m_requestedCenterFrequency: " << m_requestedCenterFrequency; m_sampleSink->start(); } } void DownChannelizer::stop() { if(m_sampleSink != 0) m_sampleSink->stop(); } bool DownChannelizer::handleMessage(const Message& cmd) { qDebug() << "DownChannelizer::handleMessage: " << cmd.getIdentifier(); // TODO: apply changes only if input sample rate or requested output sample rate change. Change of center frequency has no impact. if (DSPSignalNotification::match(cmd)) { DSPSignalNotification& notif = (DSPSignalNotification&) cmd; m_inputSampleRate = notif.getSampleRate(); qDebug() << "DownChannelizer::handleMessage: DSPSignalNotification: m_inputSampleRate: " << m_inputSampleRate; applyConfiguration(); if (m_sampleSink != 0) { DSPSignalNotification* rep = new DSPSignalNotification(notif); // make a copy m_sampleSink->getInputMessageQueue()->push(rep); } emit inputSampleRateChanged(); return true; } else if (DSPConfigureChannelizer::match(cmd)) { DSPConfigureChannelizer& chan = (DSPConfigureChannelizer&) cmd; m_requestedOutputSampleRate = chan.getSampleRate(); m_requestedCenterFrequency = chan.getCenterFrequency(); qDebug() << "DownChannelizer::handleMessage: DSPConfigureChannelizer:" << " m_requestedOutputSampleRate: " << m_requestedOutputSampleRate << " m_requestedCenterFrequency: " << m_requestedCenterFrequency; applyConfiguration(); return true; } else { return false; // if (m_sampleSink != 0) // { // return m_sampleSink->handleMessage(cmd); // } // else // { // return false; // } } } void DownChannelizer::applyConfiguration() { if (m_inputSampleRate == 0) { qDebug() << "DownChannelizer::applyConfiguration: m_inputSampleRate=0 aborting"; return; } m_mutex.lock(); freeFilterChain(); m_currentCenterFrequency = createFilterChain( m_inputSampleRate / -2, m_inputSampleRate / 2, m_requestedCenterFrequency - m_requestedOutputSampleRate / 2, m_requestedCenterFrequency + m_requestedOutputSampleRate / 2); m_mutex.unlock(); //debugFilterChain(); m_currentOutputSampleRate = m_inputSampleRate / (1 << m_filterStages.size()); qDebug() << "DownChannelizer::applyConfiguration in=" << m_inputSampleRate << ", req=" << m_requestedOutputSampleRate << ", out=" << m_currentOutputSampleRate << ", fc=" << m_currentCenterFrequency; if (m_sampleSink != 0) { MsgChannelizerNotification *notif = MsgChannelizerNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency); m_sampleSink->getInputMessageQueue()->push(notif); } } #ifdef SDR_SAMPLE_24BIT DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterDB), m_workFunction(0), m_mode(mode), m_sse(false) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterDB::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterDB::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterDB::workDecimateUpperHalf; break; } } #else #ifdef USE_SSE4_1 DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterEO1), m_workFunction(0), m_mode(mode), m_sse(true) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterEO1::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterEO1::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterEO1::workDecimateUpperHalf; break; } } #else DownChannelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilterDB), m_workFunction(0), m_mode(mode), m_sse(false) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilterDB::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilterDB::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilterDB::workDecimateUpperHalf; break; } } #endif #endif DownChannelizer::FilterStage::~FilterStage() { delete m_filter; } bool DownChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const { //qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd); if(sigEnd <= sigStart) return false; if(chanEnd <= chanStart) return false; return (sigStart <= chanStart) && (sigEnd >= chanEnd); } Real DownChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real safetyMargin = sigBw / 20; Real rot = sigBw / 4; safetyMargin = 0; //fprintf(stderr, "Channelizer::createFilterChain: "); //fprintf(stderr, "Signal [%.1f, %.1f] (BW %.1f), Channel [%.1f, %.1f], Rot %.1f, Safety %.1f\n", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin); #if 1 // check if it fits into the left half if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) { //fprintf(stderr, "-> take left half (rotate by +1/4 and decimate by 2)\n"); m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } // check if it fits into the right half if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) { //fprintf(stderr, "-> take right half (rotate by -1/4 and decimate by 2)\n"); m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } // check if it fits into the center // Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) { if(signalContainsChannel(sigStart + rot + safetyMargin, sigEnd - rot - safetyMargin, chanStart, chanEnd)) { //fprintf(stderr, "-> take center half (decimate by 2)\n"); m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); // Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd); return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd); } #endif Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); //fprintf(stderr, "-> complete (final BW %.1f, frequency offset %.1f)\n", sigBw, ofs); return ofs; } void DownChannelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); } void DownChannelizer::debugFilterChain() { qDebug("DownChannelizer::debugFilterChain: %lu stages", m_filterStages.size()); for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) { switch ((*it)->m_mode) { case FilterStage::ModeCenter: qDebug("DownChannelizer::debugFilterChain: center %s", (*it)->m_sse ? "sse" : "no_sse"); break; case FilterStage::ModeLowerHalf: qDebug("DownChannelizer::debugFilterChain: lower %s", (*it)->m_sse ? "sse" : "no_sse"); break; case FilterStage::ModeUpperHalf: qDebug("DownChannelizer::debugFilterChain: upper %s", (*it)->m_sse ? "sse" : "no_sse"); break; default: qDebug("DownChannelizer::debugFilterChain: none %s", (*it)->m_sse ? "sse" : "no_sse"); break; } } }