/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2015 F4EXB // // written by Edouard Griffiths // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "audio/audiooutput.h" #include "audio/audionetsink.h" #include "dsp/dspengine.h" #include "dsp/downchannelizer.h" #include "dsp/threadedbasebandsamplesink.h" #include "dsp/dspcommands.h" #include "device/devicesourceapi.h" #include "rdsparser.h" #include "bfmdemod.h" MESSAGE_CLASS_DEFINITION(BFMDemod::MsgConfigureChannelizer, Message) MESSAGE_CLASS_DEFINITION(BFMDemod::MsgReportChannelSampleRateChanged, Message) MESSAGE_CLASS_DEFINITION(BFMDemod::MsgConfigureBFMDemod, Message) const QString BFMDemod::m_channelIdURI = "sdrangel.channel.bfm"; const QString BFMDemod::m_channelId = "BFMDemod"; const Real BFMDemod::default_deemphasis = 50.0; // 50 us const int BFMDemod::m_udpBlockSize = 512; BFMDemod::BFMDemod(DeviceSourceAPI *deviceAPI) : ChannelSinkAPI(m_channelIdURI), m_deviceAPI(deviceAPI), m_inputSampleRate(384000), m_inputFrequencyOffset(0), m_audioFifo(250000), m_settingsMutex(QMutex::Recursive), m_pilotPLL(19000/384000, 50/384000, 0.01), m_deemphasisFilterX(default_deemphasis * 48000 * 1.0e-6), m_deemphasisFilterY(default_deemphasis * 48000 * 1.0e-6), m_fmExcursion(default_excursion) { setObjectName(m_channelId); m_magsq = 0.0f; m_magsqSum = 0.0f; m_magsqPeak = 0.0f; m_magsqCount = 0; m_squelchLevel = 0; m_squelchState = 0; m_interpolatorDistance = 0.0f; m_interpolatorDistanceRemain = 0.0f; m_interpolatorRDSDistance = 0.0f; m_interpolatorRDSDistanceRemain = 0.0f; m_interpolatorStereoDistance = 0.0f; m_interpolatorStereoDistanceRemain = 0.0f; m_sampleSink = 0; m_m1Arg = 0; m_rfFilter = new fftfilt(-50000.0 / 384000.0, 50000.0 / 384000.0, filtFftLen); m_deemphasisFilterX.configure(default_deemphasis * m_settings.m_audioSampleRate * 1.0e-6); m_deemphasisFilterY.configure(default_deemphasis * m_settings.m_audioSampleRate * 1.0e-6); m_phaseDiscri.setFMScaling(384000/m_fmExcursion); m_audioBuffer.resize(16384); m_audioBufferFill = 0; DSPEngine::instance()->getAudioDeviceManager()->addAudioSink(&m_audioFifo, getInputMessageQueue()); m_audioNetSink = new AudioNetSink(0); // parent thread allocated dynamically m_audioNetSink->setDestination(m_settings.m_udpAddress, m_settings.m_udpPort); m_audioNetSink->setStereo(true); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); applySettings(m_settings, true); m_channelizer = new DownChannelizer(this); m_threadedChannelizer = new ThreadedBasebandSampleSink(m_channelizer, this); m_deviceAPI->addThreadedSink(m_threadedChannelizer); m_deviceAPI->addChannelAPI(this); } BFMDemod::~BFMDemod() { if (m_rfFilter) { delete m_rfFilter; } DSPEngine::instance()->getAudioDeviceManager()->removeAudioSink(&m_audioFifo); delete m_audioNetSink; m_deviceAPI->removeChannelAPI(this); m_deviceAPI->removeThreadedSink(m_threadedChannelizer); delete m_threadedChannelizer; delete m_channelizer; } void BFMDemod::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end, bool firstOfBurst __attribute__((unused))) { Complex ci, cs, cr; fftfilt::cmplx *rf; int rf_out; double msq; Real demod; m_sampleBuffer.clear(); m_settingsMutex.lock(); for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real() / SDR_RX_SCALEF, it->imag() / SDR_RX_SCALEF); c *= m_nco.nextIQ(); rf_out = m_rfFilter->runFilt(c, &rf); // filter RF before demod for (int i =0 ; i m_magsqPeak) { m_magsqPeak = msq; } m_magsqCount++; // m_movingAverage.feed(msq); if(m_magsq >= m_squelchLevel) { m_squelchState = m_settings.m_rfBandwidth / 20; // decay rate } if(m_squelchState > 0) { m_squelchState--; //demod = phaseDiscriminator2(rf[i], msq); demod = m_phaseDiscri.phaseDiscriminator(rf[i]); } else { demod = 0; } if (!m_settings.m_showPilot) { m_sampleBuffer.push_back(Sample(demod * SDR_RX_SCALEF, 0.0)); } if (m_settings.m_rdsActive) { //Complex r(demod * 2.0 * std::cos(3.0 * m_pilotPLLSamples[3]), 0.0); Complex r(demod * 2.0 * std::cos(3.0 * m_pilotPLLSamples[3]), 0.0); if (m_interpolatorRDS.decimate(&m_interpolatorRDSDistanceRemain, r, &cr)) { bool bit; if (m_rdsDemod.process(cr.real(), bit)) { if (m_rdsDecoder.frameSync(bit)) { m_rdsParser.parseGroup(m_rdsDecoder.getGroup()); } } m_interpolatorRDSDistanceRemain += m_interpolatorRDSDistance; } } Real sampleStereo = 0.0f; // Process stereo if stereo mode is selected if (m_settings.m_audioStereo) { m_pilotPLL.process(demod, m_pilotPLLSamples); if (m_settings.m_showPilot) { m_sampleBuffer.push_back(Sample(m_pilotPLLSamples[1] * SDR_RX_SCALEF, 0.0)); // debug 38 kHz pilot } if (m_settings.m_lsbStereo) { // 1.17 * 0.7 = 0.819 Complex s(demod * m_pilotPLLSamples[1], demod * m_pilotPLLSamples[2]); if (m_interpolatorStereo.decimate(&m_interpolatorStereoDistanceRemain, s, &cs)) { sampleStereo = cs.real() + cs.imag(); m_interpolatorStereoDistanceRemain += m_interpolatorStereoDistance; } } else { Complex s(demod * 1.17 * m_pilotPLLSamples[1], 0); if (m_interpolatorStereo.decimate(&m_interpolatorStereoDistanceRemain, s, &cs)) { sampleStereo = cs.real(); m_interpolatorStereoDistanceRemain += m_interpolatorStereoDistance; } } } Complex e(demod, 0); if (m_interpolator.decimate(&m_interpolatorDistanceRemain, e, &ci)) { if (m_settings.m_audioStereo) { Real deemph_l, deemph_r; // Pre-emphasis is applied on each channel before multiplexing m_deemphasisFilterX.process(ci.real() + sampleStereo, deemph_l); m_deemphasisFilterY.process(ci.real() - sampleStereo, deemph_r); m_audioBuffer[m_audioBufferFill].l = (qint16)(deemph_l * (1<<12) * m_settings.m_volume); m_audioBuffer[m_audioBufferFill].r = (qint16)(deemph_r * (1<<12) * m_settings.m_volume); if (m_settings.m_copyAudioToUDP) { m_audioNetSink->write(m_audioBuffer[m_audioBufferFill].l); m_audioNetSink->write(m_audioBuffer[m_audioBufferFill].r); } } else { Real deemph; m_deemphasisFilterX.process(ci.real(), deemph); quint16 sample = (qint16)(deemph * (1<<12) * m_settings.m_volume); m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; if (m_settings.m_copyAudioToUDP) { m_audioNetSink->write(m_audioBuffer[m_audioBufferFill].l); m_audioNetSink->write(m_audioBuffer[m_audioBufferFill].r); } } ++m_audioBufferFill; if(m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("BFMDemod::feed: %u/%u audio samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } m_interpolatorDistanceRemain += m_interpolatorDistance; } } } if(m_audioBufferFill > 0) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill, 1); if(res != m_audioBufferFill) { qDebug("BFMDemod::feed: %u/%u tail samples written", res, m_audioBufferFill); } m_audioBufferFill = 0; } if(m_sampleSink != 0) { m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), true); } m_sampleBuffer.clear(); m_settingsMutex.unlock(); } void BFMDemod::start() { m_squelchState = 0; m_audioFifo.clear(); m_phaseDiscri.reset(); applyChannelSettings(m_inputSampleRate, m_inputFrequencyOffset, true); } void BFMDemod::stop() { } bool BFMDemod::handleMessage(const Message& cmd) { if (DownChannelizer::MsgChannelizerNotification::match(cmd)) { DownChannelizer::MsgChannelizerNotification& notif = (DownChannelizer::MsgChannelizerNotification&) cmd; qDebug() << "BFMDemod::handleMessage: MsgChannelizerNotification:" << " inputSampleRate: " << notif.getSampleRate() << " inputFrequencyOffset: " << notif.getFrequencyOffset(); applyChannelSettings(notif.getSampleRate(), notif.getFrequencyOffset()); if (getMessageQueueToGUI()) { MsgReportChannelSampleRateChanged *msg = MsgReportChannelSampleRateChanged::create(getSampleRate()); getMessageQueueToGUI()->push(msg); } return true; } else if (MsgConfigureChannelizer::match(cmd)) { MsgConfigureChannelizer& cfg = (MsgConfigureChannelizer&) cmd; qDebug() << "BFMDemod::handleMessage: MsgConfigureChannelizer: sampleRate: " << cfg.getSampleRate() << " centerFrequency: " << cfg.getCenterFrequency(); m_channelizer->configure(m_channelizer->getInputMessageQueue(), cfg.getSampleRate(), cfg.getCenterFrequency()); return true; } else if (MsgConfigureBFMDemod::match(cmd)) { MsgConfigureBFMDemod& cfg = (MsgConfigureBFMDemod&) cmd; qDebug() << "BFMDemod::handleMessage: MsgConfigureBFMDemod"; applySettings(cfg.getSettings(), cfg.getForce()); return true; } else if (BasebandSampleSink::MsgThreadedSink::match(cmd)) { BasebandSampleSink::MsgThreadedSink& cfg = (BasebandSampleSink::MsgThreadedSink&) cmd; const QThread *thread = cfg.getThread(); qDebug("BFMDemod::handleMessage: BasebandSampleSink::MsgThreadedSink: %p", thread); m_audioNetSink->moveToThread(const_cast(thread)); // use the thread for udp sinks return true; } else if (DSPSignalNotification::match(cmd)) { return true; } else { qDebug() << "BFMDemod::handleMessage: passed: " << cmd.getIdentifier(); if (m_sampleSink != 0) { return m_sampleSink->handleMessage(cmd); } else { return false; } } } void BFMDemod::applyChannelSettings(int inputSampleRate, int inputFrequencyOffset, bool force) { qDebug() << "BFMDemod::applyChannelSettings:" << " inputSampleRate: " << inputSampleRate << " inputFrequencyOffset: " << inputFrequencyOffset; if((inputFrequencyOffset != m_inputFrequencyOffset) || (inputSampleRate != m_inputSampleRate) || force) { m_nco.setFreq(-inputFrequencyOffset, inputSampleRate); } if ((inputSampleRate != m_inputSampleRate) || force) { m_pilotPLL.configure(19000.0/inputSampleRate, 50.0/inputSampleRate, 0.01); m_settingsMutex.lock(); m_interpolator.create(16, inputSampleRate, m_settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) inputSampleRate / m_settings.m_audioSampleRate; m_interpolatorDistance = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate; m_interpolatorStereo.create(16, inputSampleRate, m_settings.m_afBandwidth); m_interpolatorStereoDistanceRemain = (Real) inputSampleRate / m_settings.m_audioSampleRate; m_interpolatorStereoDistance = (Real) inputSampleRate / (Real) m_settings.m_audioSampleRate; m_interpolatorRDS.create(4, inputSampleRate, 600.0); m_interpolatorRDSDistanceRemain = (Real) inputSampleRate / 250000.0; m_interpolatorRDSDistance = (Real) inputSampleRate / 250000.0; Real lowCut = -(m_settings.m_rfBandwidth / 2.0) / inputSampleRate; Real hiCut = (m_settings.m_rfBandwidth / 2.0) / inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_phaseDiscri.setFMScaling(inputSampleRate / m_fmExcursion); m_settingsMutex.unlock(); } m_inputSampleRate = inputSampleRate; m_inputFrequencyOffset = inputFrequencyOffset; } void BFMDemod::applySettings(const BFMDemodSettings& settings, bool force) { qDebug() << "BFMDemod::applySettings: MsgConfigureBFMDemod:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_volume: " << settings.m_volume << " m_squelch: " << settings.m_squelch << " m_audioStereo: " << settings.m_audioStereo << " m_lsbStereo: " << settings.m_lsbStereo << " m_showPilot: " << settings.m_showPilot << " m_rdsActive: " << settings.m_rdsActive << " m_copyAudioToUDP: " << settings.m_copyAudioToUDP << " m_udpAddress: " << settings.m_udpAddress << " m_udpPort: " << settings.m_udpPort << " force: " << force; if ((settings.m_audioStereo && (settings.m_audioStereo != m_settings.m_audioStereo)) || force) { m_pilotPLL.configure(19000.0/m_inputSampleRate, 50.0/m_inputSampleRate, 0.01); } if((settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { m_settingsMutex.lock(); m_interpolator.create(16, m_inputSampleRate, settings.m_afBandwidth); m_interpolatorDistanceRemain = (Real) m_inputSampleRate / settings.m_audioSampleRate; m_interpolatorDistance = (Real) m_inputSampleRate / (Real) settings.m_audioSampleRate; m_interpolatorStereo.create(16, m_inputSampleRate, settings.m_afBandwidth); m_interpolatorStereoDistanceRemain = (Real) m_inputSampleRate / settings.m_audioSampleRate; m_interpolatorStereoDistance = (Real) m_inputSampleRate / (Real) settings.m_audioSampleRate; m_interpolatorRDS.create(4, m_inputSampleRate, 600.0); m_interpolatorRDSDistanceRemain = (Real) m_inputSampleRate / 250000.0; m_interpolatorRDSDistance = (Real) m_inputSampleRate / 250000.0; m_settingsMutex.unlock(); } if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || (settings.m_inputFrequencyOffset != m_settings.m_inputFrequencyOffset) || force) { m_settingsMutex.lock(); Real lowCut = -(settings.m_rfBandwidth / 2.0) / m_inputSampleRate; Real hiCut = (settings.m_rfBandwidth / 2.0) / m_inputSampleRate; m_rfFilter->create_filter(lowCut, hiCut); m_phaseDiscri.setFMScaling(m_inputSampleRate / m_fmExcursion); m_settingsMutex.unlock(); } if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || (settings.m_audioSampleRate != m_settings.m_audioSampleRate) || force) { m_settingsMutex.lock(); qDebug() << "BFMDemod::handleMessage: m_lowpass.create"; m_lowpass.create(21, settings.m_audioSampleRate, settings.m_afBandwidth); m_settingsMutex.unlock(); } if ((settings.m_squelch != m_settings.m_squelch) || force) { qDebug() << "BFMDemod::handleMessage: set m_squelchLevel"; m_squelchLevel = std::pow(10.0, settings.m_squelch / 20.0); m_squelchLevel *= m_squelchLevel; } if ((settings.m_audioSampleRate != m_settings.m_audioSampleRate) || force) { m_deemphasisFilterX.configure(default_deemphasis * settings.m_audioSampleRate * 1.0e-6); m_deemphasisFilterY.configure(default_deemphasis * settings.m_audioSampleRate * 1.0e-6); } if ((settings.m_udpAddress != m_settings.m_udpAddress) || (settings.m_udpPort != m_settings.m_udpPort) || force) { m_audioNetSink->setDestination(settings.m_udpAddress, settings.m_udpPort); } if ((settings.m_copyAudioUseRTP != m_settings.m_copyAudioUseRTP) || force) { if (settings.m_copyAudioUseRTP) { if (m_audioNetSink->selectType(AudioNetSink::SinkRTP)) { qDebug("WFMDemod::applySettings: set audio sink to RTP mode"); } else { qWarning("WFMDemod::applySettings: RTP support for audio sink not available. Fall back too UDP"); } } else { if (m_audioNetSink->selectType(AudioNetSink::SinkUDP)) { qDebug("WFMDemod::applySettings: set audio sink to UDP mode"); } else { qWarning("WFMDemod::applySettings: failed to set audio sink to UDP mode"); } } } m_settings = settings; } QByteArray BFMDemod::serialize() const { return m_settings.serialize(); } bool BFMDemod::deserialize(const QByteArray& data) { if (m_settings.deserialize(data)) { MsgConfigureBFMDemod *msg = MsgConfigureBFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return true; } else { m_settings.resetToDefaults(); MsgConfigureBFMDemod *msg = MsgConfigureBFMDemod::create(m_settings, true); m_inputMessageQueue.push(msg); return false; } }