/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2019 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include "util/stepfunctions.h" #include "util/db.h" #include "audio/audiooutput.h" #include "dsp/dspengine.h" #include "dsp/dspcommands.h" #include "dsp/devicesamplemimo.h" #include "device/deviceapi.h" #include "nfmdemodreport.h" #include "nfmdemodsink.h" const double NFMDemodSink::afSqTones[] = {1000.0, 6000.0}; // {1200.0, 8000.0}; const double NFMDemodSink::afSqTones_lowrate[] = {1000.0, 3500.0}; NFMDemodSink::NFMDemodSink() : m_channelSampleRate(48000), m_channelFrequencyOffset(0), m_audioSampleRate(48000), m_audioBufferFill(0), m_audioFifo(48000), m_ctcssIndex(0), m_sampleCount(0), m_squelchCount(0), m_squelchGate(4800), m_squelchLevel(-990), m_squelchOpen(false), m_afSquelchOpen(false), m_magsq(0.0f), m_magsqSum(0.0f), m_magsqPeak(0.0f), m_magsqCount(0), m_afSquelch(), m_squelchDelayLine(24000), m_messageQueueToGUI(nullptr) { m_agcLevel = 1.0; m_audioBuffer.resize(1<<14); applySettings(m_settings, true); applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true); } NFMDemodSink::~NFMDemodSink() { } void NFMDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end) { Complex ci; for (SampleVector::const_iterator it = begin; it != end; ++it) { Complex c(it->real(), it->imag()); c *= m_nco.nextIQ(); if (m_interpolatorDistance < 1.0f) // interpolate { while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } else // decimate { if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci)) { processOneSample(ci); m_interpolatorDistanceRemain += m_interpolatorDistance; } } } } void NFMDemodSink::processOneSample(Complex &ci) { qint16 sample; double magsqRaw; // = ci.real()*ci.real() + c.imag()*c.imag(); Real deviation; Real demod = m_phaseDiscri.phaseDiscriminatorDelta(ci, magsqRaw, deviation); Real magsq = magsqRaw / (SDR_RX_SCALED*SDR_RX_SCALED); m_movingAverage(magsq); m_magsqSum += magsq; if (magsq > m_magsqPeak) { m_magsqPeak = magsq; } m_magsqCount++; m_sampleCount++; // AF processing if (m_settings.m_deltaSquelch) { if (m_afSquelch.analyze(demod)) { m_afSquelchOpen = m_afSquelch.evaluate(); // ? m_squelchGate + m_squelchDecay : 0; if (!m_afSquelchOpen) { m_squelchDelayLine.zeroBack(m_audioSampleRate/10); // zero out evaluation period } } if (m_afSquelchOpen) { m_squelchDelayLine.write(demod); if (m_squelchCount < 2*m_squelchGate) { m_squelchCount++; } } else { m_squelchDelayLine.write(0); if (m_squelchCount > 0) { m_squelchCount--; } } } else { if ((Real) m_movingAverage < m_squelchLevel) { m_squelchDelayLine.write(0); if (m_squelchCount > 0) { m_squelchCount--; } } else { m_squelchDelayLine.write(demod); if (m_squelchCount < 2*m_squelchGate) { m_squelchCount++; } } } m_squelchOpen = (m_squelchCount > m_squelchGate); if (m_settings.m_audioMute) { sample = 0; } else { if (m_squelchOpen) { if (m_settings.m_ctcssOn) { Real ctcss_sample = m_ctcssLowpass.filter(demod); if ((m_sampleCount & 7) == 7) // decimate 48k -> 6k { if (m_ctcssDetector.analyze(&ctcss_sample)) { int maxToneIndex; if (m_ctcssDetector.getDetectedTone(maxToneIndex)) { if (maxToneIndex+1 != m_ctcssIndex) { if (getMessageQueueToGUI()) { NFMDemodReport::MsgReportCTCSSFreq *msg = NFMDemodReport::MsgReportCTCSSFreq::create(m_ctcssDetector.getToneSet()[maxToneIndex]); getMessageQueueToGUI()->push(msg); } m_ctcssIndex = maxToneIndex+1; } } else { if (m_ctcssIndex != 0) { if (getMessageQueueToGUI()) { NFMDemodReport::MsgReportCTCSSFreq *msg = NFMDemodReport::MsgReportCTCSSFreq::create(0); getMessageQueueToGUI()->push(msg); } m_ctcssIndex = 0; } } } } } if (m_settings.m_ctcssOn && m_ctcssIndexSelected && (m_ctcssIndexSelected != m_ctcssIndex)) { sample = 0; } else { if (m_settings.m_highPass) { sample = m_bandpass.filter(m_squelchDelayLine.readBack(m_squelchGate)) * m_settings.m_volume * 301.0f; } else { sample = m_lowpass.filter(m_squelchDelayLine.readBack(m_squelchGate)) * m_settings.m_volume * 301.0f; } } } else { if (m_ctcssIndex != 0) { if (getMessageQueueToGUI()) { NFMDemodReport::MsgReportCTCSSFreq *msg = NFMDemodReport::MsgReportCTCSSFreq::create(0); getMessageQueueToGUI()->push(msg); } m_ctcssIndex = 0; } sample = 0; } } m_audioBuffer[m_audioBufferFill].l = sample; m_audioBuffer[m_audioBufferFill].r = sample; ++m_audioBufferFill; if (m_audioBufferFill >= m_audioBuffer.size()) { uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill); if (res != m_audioBufferFill) { qDebug("NFMDemodSink::feed: %u/%u audio samples written", res, m_audioBufferFill); qDebug("NFMDemodSink::feed: m_audioSampleRate: %u m_channelSampleRate: %d", m_audioSampleRate, m_channelSampleRate); } m_audioBufferFill = 0; } } void NFMDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force) { qDebug() << "NFMDemodSink::applyChannelSettings:" << " channelSampleRate: " << channelSampleRate << " channelFrequencyOffset: " << channelFrequencyOffset; if ((channelFrequencyOffset != m_channelFrequencyOffset) || (channelSampleRate != m_channelSampleRate) || force) { m_nco.setFreq(-channelFrequencyOffset, channelSampleRate); } if ((channelSampleRate != m_channelSampleRate) || force) { m_interpolator.create(16, channelSampleRate, m_settings.m_rfBandwidth / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) channelSampleRate / (Real) m_audioSampleRate; } m_channelSampleRate = channelSampleRate; m_channelFrequencyOffset = channelFrequencyOffset; } void NFMDemodSink::applySettings(const NFMDemodSettings& settings, bool force) { qDebug() << "NFMDemodSink::applySettings:" << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset << " m_rfBandwidth: " << settings.m_rfBandwidth << " m_afBandwidth: " << settings.m_afBandwidth << " m_fmDeviation: " << settings.m_fmDeviation << " m_volume: " << settings.m_volume << " m_squelchGate: " << settings.m_squelchGate << " m_deltaSquelch: " << settings.m_deltaSquelch << " m_squelch: " << settings.m_squelch << " m_ctcssIndex: " << settings.m_ctcssIndex << " m_ctcssOn: " << settings.m_ctcssOn << " m_highPass: " << settings.m_highPass << " m_audioMute: " << settings.m_audioMute << " m_audioDeviceName: " << settings.m_audioDeviceName << " force: " << force; if ((settings.m_rfBandwidth != m_settings.m_rfBandwidth) || force) { m_interpolator.create(16, m_channelSampleRate, settings.m_rfBandwidth / 2.2); m_interpolatorDistanceRemain = 0; m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate; } if ((settings.m_fmDeviation != m_settings.m_fmDeviation) || force) { m_phaseDiscri.setFMScaling((8.0f*m_audioSampleRate) / static_cast(settings.m_fmDeviation)); // integrate 4x factor } if ((settings.m_afBandwidth != m_settings.m_afBandwidth) || force) { m_bandpass.create(301, m_audioSampleRate, 300.0, settings.m_afBandwidth); m_lowpass.create(301, m_audioSampleRate, settings.m_afBandwidth); } if ((settings.m_squelchGate != m_settings.m_squelchGate) || force) { m_squelchGate = (m_audioSampleRate / 100) * settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter } if ((settings.m_squelch != m_settings.m_squelch) || (settings.m_deltaSquelch != m_settings.m_deltaSquelch) || force) { if (settings.m_deltaSquelch) { // input is a value in negative centis m_squelchLevel = (- settings.m_squelch) / 100.0; m_afSquelch.setThreshold(m_squelchLevel); m_afSquelch.reset(); } else { // input is a value in deci-Bels m_squelchLevel = std::pow(10.0, settings.m_squelch / 10.0); m_movingAverage.reset(); } m_squelchCount = 0; // reset squelch open counter } if ((settings.m_ctcssIndex != m_settings.m_ctcssIndex) || force) { setSelectedCtcssIndex(settings.m_ctcssIndex); } m_settings = settings; } void NFMDemodSink::applyAudioSampleRate(unsigned int sampleRate) { if (sampleRate < 0) { qWarning("NFMDemodSink::applyAudioSampleRate: invalid sample rate: %d", sampleRate); return; } qDebug("NFMDemodSink::applyAudioSampleRate: %u m_channelSampleRate: %d", sampleRate, m_channelSampleRate); m_ctcssLowpass.create(301, sampleRate, 250.0); m_bandpass.create(301, sampleRate, 300.0, m_settings.m_afBandwidth); m_lowpass.create(301, sampleRate, m_settings.m_afBandwidth); m_squelchGate = (sampleRate / 100) * m_settings.m_squelchGate; // gate is given in 10s of ms at 48000 Hz audio sample rate m_squelchCount = 0; // reset squelch open counter m_ctcssDetector.setCoefficients(sampleRate/16, sampleRate/8.0f); // 0.5s / 2 Hz resolution if (sampleRate < 16000) { m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones_lowrate); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay } else { m_afSquelch.setCoefficients(sampleRate/2000, 600, sampleRate, 200, 0, afSqTones); // 0.5ms test period, 300ms average span, audio SR, 100ms attack, no decay } m_phaseDiscri.setFMScaling((8.0f*sampleRate) / static_cast(m_settings.m_fmDeviation)); // integrate 4x factor m_audioFifo.setSize(sampleRate); m_squelchDelayLine.resize(sampleRate/2); m_audioSampleRate = sampleRate; }